125 research outputs found

    Uplink Performance of Cell-Free Extremely Large-Scale MIMO Systems

    Full text link
    In this paper, we investigate the uplink performance of cell-free (CF) extremely large-scale multiple-input-multipleoutput (XL-MIMO) systems, which is a promising technique for future wireless communications. More specifically, we consider the practical scenario with multiple base stations (BSs) and multiple user equipments (UEs). To this end, we derive exact achievable spectral efficiency (SE) expressions for any combining scheme. It is worth noting that we derive the closed-form SE expressions for the CF XL-MIMO with maximum ratio (MR) combining. Numerical results show that the SE performance of the CF XL-MIMO can be hugely improved compared with the small-cell XL-MIMO. It is interesting that a smaller antenna spacing leads to a higher correlation level among patch antennas. Finally, we prove that increasing the number of UE antennas may decrease the SE performance with MR combining

    Joint Distributed Precoding and Beamforming for RIS-aided Cell-Free Massive MIMO Systems

    Full text link
    The amalgamation of cell-free networks and reconfigurable intelligent surface (RIS) has become a prospective technique for future sixth-generation wireless communication systems. In this paper, we focus on the precoding and beamforming design for a downlink RIS-aided cell-free network. The design is formulated as a non-convex optimization problem by jointly optimizing the combining vector, active precoding, and passive RIS beamforming for minimizing the weighted sum of users' mean square error. A novel joint distributed precoding and beamforming framework is proposed to decentralize the alternating optimization method for acquiring a suboptimal solution to the design problem. Finally, numerical results validate the effectiveness of the proposed distributed precoding and beamforming framework, showing its low-complexity and improved scalability compared with the centralized method

    Channel Estimation for XL-MIMO Systems with Polar-Domain Multi-Scale Residual Dense Network

    Full text link
    Extremely large-scale multiple-input multiple-output (XL-MIMO) is a promising technique to enable versatile applications for future wireless communications.To realize the huge potential performance gain, accurate channel state information is a fundamental technical prerequisite. In conventional massive MIMO, the channel is often modeled by the far-field planar-wavefront with rich sparsity in the angular domain that facilitates the design of low-complexity channel estimation. However, this sparsity is not conspicuous in XL-MIMO systems due to the non-negligible near-field spherical-wavefront. To address the inherent performance loss of the angular-domain channel estimation schemes, we first propose the polar-domain multiple residual dense network (P-MRDN) for XL-MIMO systems based on the polar-domain sparsity of the near-field channel by improving the existing MRDN scheme. Furthermore, a polar-domain multi-scale residual dense network (P-MSRDN) is designed to improve the channel estimation accuracy. Finally, simulation results reveal the superior performance of the proposed schemes compared with existing benchmark schemes and the minimal influence of the channel sparsity on the proposed schemes

    A Genome-Scale Model of \u3cem\u3eShewanella piezotolerans\u3c/em\u3e Simulates Mechanisms of Metabolic Diversity and Energy Conservation

    Get PDF
    Shewanella piezotolerans strain WP3 belongs to the group 1 branch of the Shewanella genus and is a piezotolerant and psychrotolerant species isolated from the deep sea. In this study, a genome-scale model was constructed for WP3 using a combination of genome annotation, ortholog mapping, and physiological verification. The metabolic reconstruction contained 806 genes, 653 metabolites, and 922 reactions, including central metabolic functions that represented nonhomologous replacements between the group 1 and group 2 Shewanella species. Metabolic simulations with the WP3 model demonstrated consistency with existing knowledge about the physiology of the organism. A comparison of model simulations with experimental measurements verified the predicted growth profiles under increasing concentrations of carbon sources. The WP3 model was applied to study mechanisms of anaerobic respiration through investigating energy conservation, redox balancing, and the generation of proton motive force. Despite being an obligate respiratory organism, WP3 was predicted to use substrate-level phosphorylation as the primary source of energy conservation under anaerobic conditions, a trait previously identified in other Shewanella species. Further investigation of the ATP synthase activity revealed a positive correlation between the availability of reducing equivalents in the cell and the directionality of the ATP synthase reaction flux. Comparison of the WP3 model with an existing model of a group 2 species, Shewanella oneidensis MR-1, revealed that the WP3 model demonstrated greater flexibility in ATP production under the anaerobic conditions. Such flexibility could be advantageous to WP3 for its adaptation to fluctuating availability of organic carbon sources in the deep sea

    Clinical features and prognosis of pulmonary enteric adenocarcinoma: A retrospective study in China and the SEER database

    Get PDF
    ObjectivePulmonary enteric adenocarcinoma (PEAC) is a rare subtype of pulmonary adenocarcinoma that lacks effective treatment. The purpose of this research was to investigate the clinical characteristics, treatment, and prognosis of PEAC, as well as the impact of relevant factors on survival, thus providing a reference for the clinical management of patients with this disease.MethodsFor this study, we gathered clinical data from 26 patients with PEAC in the Affiliated Cancer Hospital of Zhengzhou University from June 2014 to June 2021. We used SEER*Stat software V8.3.5 to download the PEAC patients from the Surveillance, Epidemiology, and End Results (SEER) database. In total, 20 patients were identified. Clinical data, including general information, imaging findings, and treatment protocols, were obtained, together with a follow-up of disease regression. The relevant clinical data were then analyzed.ResultsIt included 12 males and 14 females out of 26 patients from China, whose mean age was (62.73 ± 11.89) years; 20 were in the lower lung, 11 were stage I-II, and 15 were stage III-IV. Five had EGFR mutations, and four had KRAS mutations. In terms of treatment, patients with stage I-II were primarily treated by surgery, and patients with stage III-IV were treated mostly by chemotherapy. We extended the follow-up date to January 2022. On completion of the follow-up visit, 11 patients died, and the remaining 15 patients survived. The overall survival (OS) of 26 patients was 2.0-76.0 months, while the mean was 53.1 months, and the median OS (mOS) was 38.0 months (95% CI:1.727-74.273). In the case of progression-free survival (PFS) times, it was 2.0-76.0 months, with a mean PFS of 31.0 months and a median PFS (mPFS) of 8.0 months (95% CI:4.333-11.667). The PFS of the 15 patients in stage III-IV was 2.0-17 months, while the mean PFS was 6.5 months and the mPFS was 6.0 months (95% CI:4.512-7.488). Out of the 20 patients identified in the SEER database, the average age was 69.9 years, with 14 males and 6 females. Of these patients, 8 were diagnosed with stage I-II, while the remaining 11 were diagnosed with stage III-IV. 10 underwent surgery, 4 received radiation therapy, and 9 received chemotherapy. The mean OS of the 20 patients was 67.5 months, mOS was 28.0 months (95% CI: 9.664- 46.336). For patients diagnosed with stage III-IV, the mean OS was 14.8 months and mOS was 20 months (95% CI: 4.713-35.287).ConclusionPEAC is rare, and the prognosis is determined mainly by the stage; patients who undergo surgery in stage I-II have a better prognosis

    Synchronous multimode ultrasound for assessing right-to-left shunt: a prospective clinical study

    Get PDF
    BackgroundRight-to-left shunt (RLS) is associated with several conditions and causes morbidity. In this study, we aimed to evaluate the effectiveness of synchronous multimode ultrasonography in detecting RLS.MethodsWe prospectively enrolled 423 patients with high clinical suspicion of RLS and divided them into the contrast transcranial Doppler (cTCD) group and synchronous multimode ultrasound group, in which both cTCD and contrast transthoracic echocardiography (cTTE) were performed during the same process of contrast-enhanced ultrasound imaging. The simultaneous test results were compared with those of cTCD alone.ResultsThe positive rates of grade II (22.0%:10.0%) and III (12.7%:10.8%) shunts and the total positive rate (82.1748%) in the synchronous multimode ultrasound group were higher than those in the cTCD alone group. Among patients with RLS grade I in the synchronous multimode ultrasound group, 23 had RLS grade I in cTCD but grade 0 in synchronous cTTE, whereas four had grade I in cTCD but grade 0 in synchronous cTTE. Among patients with RLS grade II in the synchronous multimode ultrasound group, 28 had RLS grade I in cTCD but grade II in synchronous cTTE. Among patients with RLS grade III in the synchronous multimode ultrasound group, four had RLS grade I in cTCD but grade III in synchronous cTTE. Synchronous multimode ultrasound had a sensitivity of 87.5% and specificity of 60.6% in the patent foramen ovale (PFO) diagnosis. Binary logistic regression analyses showed that age (odds ratio [OR] = 1.041) and risk of paradoxical embolism score ≥ 7 (OR = 7.798) were risk factors for stroke recurrence, whereas antiplatelets (OR = 0.590) and PFO closure with antiplatelets (OR = 0.109) were protective factors.ConclusionSynchronous multimodal ultrasound significantly improves the detection rate and test efficiency, quantifies RLS more accurately, and reduces testing risks and medical costs. We conclude that synchronous multimodal ultrasound has significant potential for clinical applications

    PgtE Enzyme of Salmonella enterica Shares the Similar Biological Roles to Plasminogen Activator (Pla) in Interacting With DEC-205 (CD205), and Enhancing Host Dissemination and Infectivity by Yersinia pestis

    Get PDF
    Yersinia pestis, the cause of plague, is a newly evolved Gram-negative bacterium. Through the acquisition of the plasminogen activator (Pla), Y. pestis gained the means to rapidly disseminate throughout its mammalian hosts. It was suggested that Y. pestis utilizes Pla to interact with the DEC-205 (CD205) receptor on antigen-presenting cells (APCs) to initiate host dissemination and infection. However, the evolutionary origin of Pla has not been fully elucidated. The PgtE enzyme of Salmonella enterica, involved in host dissemination, shows sequence similarity with the Y. pestis Pla. In this study, we demonstrated that both Escherichia coli K-12 and Y. pestis bacteria expressing the PgtE-protein were able to interact with primary alveolar macrophages and DEC-205-transfected CHO cells. The interaction between PgtE-expressing bacteria and DEC-205-expressing transfectants could be inhibited by the application of an anti-DEC-205 antibody. Moreover, PgtE-expressing Y. pestis partially re-gained the ability to promote host dissemination and infection. In conclusion, the DEC-205-PgtE interaction plays a role in promoting the dissemination and infection of Y. pestis, suggesting that Pla and the PgtE of S. enterica might share a common evolutionary origin.Peer reviewe

    Environmental Adaptation: Genomic Analysis of the Piezotolerant and Psychrotolerant Deep-Sea Iron Reducing Bacterium Shewanella piezotolerans WP3

    Get PDF
    Shewanella species are widespread in various environments. Here, the genome sequence of Shewanella piezotolerans WP3, a piezotolerant and psychrotolerant iron reducing bacterium from deep-sea sediment was determined with related functional analysis to study its environmental adaptation mechanisms. The genome of WP3 consists of 5,396,476 base pairs (bp) with 4,944 open reading frames (ORFs). It possesses numerous genes or gene clusters which help it to cope with extreme living conditions such as genes for two sets of flagellum systems, structural RNA modification, eicosapentaenoic acid (EPA) biosynthesis and osmolyte transport and synthesis. And WP3 contains 55 open reading frames encoding putative c-type cytochromes which are substantial to its wide environmental adaptation ability. The mtr-omc gene cluster involved in the insoluble metal reduction in the Shewanella genus was identified and compared. The two sets of flagellum systems were found to be differentially regulated under low temperature and high pressure; the lateral flagellum system was found essential for its motility and living at low temperature
    • …
    corecore