162 research outputs found

    Numerical investigation of the scale effects of pump-jet propulsor with a pre-swirl stator

    Get PDF
    In this study, the performance of a pump-jet propulsor (PJP) with pre-swirl stator in open water is numerically investigated. Both full-scale and model-scale configurations are considered. The Reynolds-averaged Navier–Stokes equations and shear stress transport\ua0\u1d458−\u1d714 turbulence model are used in the numerical calculation. The computational domain is discretized using structured grids, and a rotating grid is affixed to the rotor to deal with the relative motion between the rotor and stationary components. The mesh quality is determined based on a grid uncertainty analysis. The numerical method is validated using model-scale experimental data. The simulation results reveal the influences of the scale size on the hydrodynamic performance and the distributions of the velocity, pressure and vorticity under three advance coefficients. With the increase in the advance coefficients, the scale influences on the efficiency become more obvious, and the efficiency of the full-scale PJP is always higher than that of the model-scale PJP. The full-scale configuration is found with a more significant instability in the gap vortex development, because it presents larger interaction between tip leakage vortex (TLV) and the inner wall of the duct. As the main velocity increases, the TLV shedding is delayed. Finally, the development process of gap vortices is analyzed for the difference operation conditions

    A Modified Normalized Difference Impervious Surface Index (MNDISI) for Automatic Urban Mapping from Landsat Imagery

    Get PDF
    Impervious surface area (ISA) is a key factor for monitoring urban environment and land development. Automatic mapping of impervious surfaces has attracted growing attention in recent years. Spectral built-up indices are considered promising to map ISA distributions due to their easy, parameter-free implementations. This study explores the potentials of impervious surface indices for ISA mapping from Landsat imagery using a case study area in Boston, USA. A modified normalized difference impervious surface index (MNDISI) is proposed, and a Gaussian-based automatic threshold selection method is used to identify the optimal MNDISI threshold for delineating impervious surfaces from background features. To evaluate its effectiveness, comparison analysis is conducted between MNDISI and the original NDISI using Landsat images from three sensors (TM/ETM+/OLI-TIRS) acquired in four seasons. Our results suggest that built-up indices are sensitive to image seasonality, and summer is the best time phase for ISA mapping. With reduced uncertainties from automatic threshold selection, the MNDISI extracts impervious surfaces from all Landsat images in summer with an overall accuracy higher than 87% and an overall Kappa coefficient higher than 0.74. The proposed method is superior to previous index-based ISA mapping from the enhanced thermal integration and automatic threshold selection. The ISA maps from the TM, ETM+ and OLI-TIRS images are not significantly different. With enlarged data pool when all Landsat sensors are considered and automation of threshold selection proposed in this study, the MNDISI could be an effective built-up index for rapid and automatic ISA mapping at regional and global scales

    Exploring Format Consistency for Instruction Tuning

    Full text link
    Instruction tuning has emerged as a promising approach to enhancing large language models in following human instructions. It is shown that increasing the diversity and number of instructions in the training data can consistently enhance generalization performance, which facilitates a recent endeavor to collect various instructions and integrate existing instruction tuning datasets into larger collections. However, different users have their unique ways of expressing instructions, and there often exist variations across different datasets in the instruction styles and formats, i.e., format inconsistency. In this work, we study how format inconsistency may impact the performance of instruction tuning. We propose a framework called "Unified Instruction Tuning" (UIT), which calls OpenAI APIs for automatic format transfer among different instruction tuning datasets. We show that UIT successfully improves the generalization performance on unseen instructions, which highlights the importance of format consistency for instruction tuning. To make the UIT framework more practical, we further propose a novel perplexity-based denoising method to reduce the noise of automatic format transfer. We also train a smaller offline model that achieves comparable format transfer capability than OpenAI APIs to reduce costs in practice

    Parameter design oriented analysis of the current control stability of the weak-grid-tied VSC

    Get PDF
    This paper studies the dynamic behaviors of weak-grid-tied VSCs with simplified transfer functions, which provides an accurate stability analysis and useful indications for tuning system parameters. A reduced-order multi-input multi-output (MIMO) transfer function that contains four single-input single-output (SISO) transfer functions for the weak-grid-tied VSC is first presented. It is found that the four SISO transfer functions share the same equivalent open-loop transfer function, i.e., the same stability conclusion. The Bode plots of the equivalent open-loop transfer function show that the inner current loop behaves as a band-pass filter whose maximum gain is approximately at the frequency of the PLL's bandwidth. By stability criterion, the harmonic amplification and instability occur when its maximum gain exceeds 0dB caused by high PLL's bandwidth, large grid impedance or high active power. It is also found that the target system is less stable when it works as an inverter than as a rectifier, due to the risk of the local positive feedback in the inverter mode. An effective criterion is further proposed to guide the selection of a proper PLL's bandwidth to ensure the stability of the VSC system. Simulation results validate the correctness of the analysis and the efficacy of the criterion

    Smart grid power load type forecasting: research on optimization methods of deep learning models

    Get PDF
    Introduction: In the field of power systems, power load type prediction is a crucial task. Different types of loads, such as domestic, industrial, commercial, etc., have different energy consumption patterns. Therefore, accurate prediction of load types can help the power system better plan power supply strategies to improve energy utilization and stability. However, this task faces multiple challenges, including the complex topology of the power system, the diversity of time series data, and the correlation between data. With the rapid development of deep learning methods, researchers are beginning to leverage these powerful techniques to address this challenge. This study aims to explore how to optimize deep learning models to improve the accuracy of load type prediction and provide support for efficient energy management and optimization of smart grids.Methods: In this study, we propose a deep learning method that combines graph convolutional networks (GCN) and sequence-to-sequence (Seq2Seq) models and introduces an attention mechanism. The methodology involves multiple steps: first, we use the GCN encoder to process the topological structure information of the power system and encode node features into a graph data representation. Next, the Seq2Seq decoder takes the historical time series data as the input sequence and generates a prediction sequence of the load type. We then introduced an attention mechanism, which allows the model to dynamically adjust its attention to input data and better capture the relationship between time series data and graph data.Results: We conducted extensive experimental validation on four different datasets, including the National Grid Electricity Load Dataset, the Canadian Electricity Load Dataset, the United States Electricity Load Dataset, and the International Electricity Load Dataset. Experimental results show that our method achieves significant improvements in load type prediction tasks. It exhibits higher accuracy and robustness compared to traditional methods and single deep learning models. Our approach demonstrates advantages in improving load type prediction accuracy, providing strong support for the future development of the power system.Discussion: The results of our study highlight the potential of deep learning techniques, specifically the combination of GCN and Seq2Seq models with attention mechanisms, in addressing the challenges of load type prediction in power systems. By improving prediction accuracy and robustness, our approach can contribute to more efficient energy management and the optimization of smart grids

    Mitigation of oscillations in three phase LCL-filtered grid converters based on proportional resonance and improved model predictive control

    Get PDF
    For three phase LCL -filtered gird converters, this paper designs a robust control strategy to reduce high frequency and subsynchronous or supersynchronous oscillations. Two components, namely the grid side inductor component and the LC filter component, constitute a three phase LCL -filtered grid converter. Model predictive control (MPC) with a disturbance observer is used to control the interconnection voltage of the LC filter. Proportional resonance (PR) control regulates the grid side current. It is possible to combine MPC with PR's advantages. The dynamic performance is enhanced by MPC's intrinsic ability to achieve active damping without extra control and reduce modulation latency. In addition to achieving zero steady state error, PR control greatly simplifies the control process when compared to the overall MPC of the entire grid converter. By analyzing the frequency response of the transfer function and output impedance, it is possible to determine that the proposed control has a sufficient phase margin and that, even when the system and control parameters change, the grid converters' output impedance is always resistive or inductive at the entire frequency, suppressing subsynchronous and high frequency oscillations. To further reduce the oscillations and harmonics, an improved MPC control framework and a feedback compensation mechanism are proposed. The effectiveness and reliability of the proposed control in current tracking, harmonic suppression, and response to grid impedance variations are verified by comparative analysis of simulation results

    Plug-and-Play Knowledge Injection for Pre-trained Language Models

    Full text link
    Injecting external knowledge can improve the performance of pre-trained language models (PLMs) on various downstream NLP tasks. However, massive retraining is required to deploy new knowledge injection methods or knowledge bases for downstream tasks. In this work, we are the first to study how to improve the flexibility and efficiency of knowledge injection by reusing existing downstream models. To this end, we explore a new paradigm plug-and-play knowledge injection, where knowledge bases are injected into frozen existing downstream models by a knowledge plugin. Correspondingly, we propose a plug-and-play injection method map-tuning, which trains a mapping of knowledge embeddings to enrich model inputs with mapped embeddings while keeping model parameters frozen. Experimental results on three knowledge-driven NLP tasks show that existing injection methods are not suitable for the new paradigm, while map-tuning effectively improves the performance of downstream models. Moreover, we show that a frozen downstream model can be well adapted to different domains with different mapping networks of domain knowledge. Our code and models are available at https://github.com/THUNLP/Knowledge-Plugin.Comment: ACL 202
    • …
    corecore