80 research outputs found

    Pyruvate dehydrogenase kinase regulates macrophage polarization in metabolic and inflammatory diseases

    Get PDF
    Macrophages are highly heterogeneous and plastic, and have two main polarized phenotypes that are determined by their microenvironment, namely pro- and anti-inflammatory macrophages. Activation of pro-inflammatory macrophages is closely associated with metabolic reprogramming, especially that of aerobic glycolysis. Mitochondrial pyruvate dehydrogenase kinase (PDK) negatively regulates pyruvate dehydrogenase complex activity through reversible phosphorylation and further links glycolysis to the tricarboxylic acid cycle and ATP production. PDK is commonly associated with the metabolism and polarization of macrophages in metabolic and inflammatory diseases. This review examines the relationship between PDK and macrophage metabolism and discusses the mechanisms by which PDK regulates macrophage polarization, migration, and inflammatory cytokine secretion in metabolic and inflammatory diseases. Elucidating the relationships between the metabolism and polarization of macrophages under physiological and pathological conditions, as well as the regulatory pathways involved, may provide valuable insights into the etiology and treatment of macrophage-mediated inflammatory diseases

    Transplanted adult human hepatic stem/progenitor cells prevent histogenesis of advanced hepatic fibrosis in mice induced by carbon tetrachloride

    Get PDF
    Transplantation of adult human hepatic stem/progenitor cells (hHSPCs) has been considered as an alternative therapy, replacing donor liver transplantation to treat liver cirrhosis. This study assessed the antifibrotic effects of hHSPCs in mice with fibrosis induced by carbon tetrachloride (CCl4) and examined the actions of hHSPCs on the fibrogenic activity of human hepatic stellate cells (HSCs) in a coculture system. Isolated hHSPCs expressed stem/progenitor cell phenotypic markers. Mice were given CCl4 (twice weekly for 7 weeks) and hHSPC transplantation weekly. CCl4 induced advanced fibrosis (bridging fibrosis and cirrhosis) in mice, which was prevented by hHSPC transplantation. The liver of hHSPC-transplanted mice showed only occasional short septa and focal parenchymal fibrosis, and a 50% reduction in hepatic collagen, assessed by Sirius red stain histomorphometry. Moreover, the proteins for α-smooth muscle actin (α-SMA) and collagen I were decreased. While α-SMA, collagen α1(I), and tissue inhibitor of metalloproproteinase-1 mRNAs were decreased, matrix metalloproteinase (MMP)-1 mRNA was increased, consistent with decreased fibrogenesis. MMP-2 and transforming growth factor-β were not affected. Alanine aminotransferase and aspartate aminotransferase were lower, suggesting improvement of liver function/damage. In coculture, hHSPCs elicited changes of α-SMA and fibrogenic molecules in HSCs similar to those observed in vivo, providing evidence for a functional link between hHSPCs and HSCs. A decreased HSC proliferation was noted. Thus, transplantation of hHSPCs prevents histogenesis of advanced liver fibrosis caused by CCl4. hHSPCs mediate downregulation of HSC activation coincident with modulation of fibrogenic molecule expression, leading to suppression of fibrogenesis both in vivo and in vitro

    Inflammatory-mediated repression of the rat ileal sodium-dependent bile acid transporter by c-fos nuclear translocation

    Get PDF
    AbstractBackground & Aims: Ileal malabsorption of bile salts is observed in Crohn's ileitis. We define the transcriptional mechanisms involved in cytokine-mediated repression of the rat apical sodium-dependent bile acid transporter (ASBT). Methods: ASBT regulation was studied in IL-1β–treated IEC-6 and Caco-2 cells and in indomethacin-treated rats. Results: Indomethacin-induced ileitis in Lewis rats leads to specific reductions in ileal ASBT messenger RNA and protein levels, whereas c-jun and c-fos are induced. The proinflammatory cytokines interleukin-1β and tumor necrosis factor repress the activity of the ASBT promoter in Caco-2 and intestinal epithelial cell-6 cells. This effect is blocked by the proteasome inhibitor, MG-132, or by the phosphatidyl inositol 3-kinase inhibitor, wortmannin. Indomethacin (in vivo) or proinflammatory cytokine (in vitro) treatment leads to serine phosphorylation and nuclear translocation of c-fos. Mutation of a 5' activated protein (AP)-1 site inactivates the ASBT promoter, whereas mutation of the 3' site abrogates the proinflammatory cytokine–mediated repression. The 5' site binds a c-jun homodimer, whereas the 3' site binds a c-jun/c-fos heterodimer. c-Jun overexpression enhances ASBT promoter activity, whereas a dominant negative c-jun construct inactivates the promoter. c-Fos overexpression represses promoter activity. A 27 base pair cis-element from the 3' site in the ASBT promoter imparts cytokine-mediated down-regulation to a heterologous SV40 promoter construct. Conclusions: The ASBT promoter contains 2 distinct cis AP-1 elements; the 5' element binds homodimeric c-jun and mediates basal transcription. Inflammation is associated with up-regulation, phosphorylation, and nuclear translocation of c-fos, which then represses ASBT promoter activity via binding of the 3' AP-1 element by a c-fos/c-jun heterodimer.GASTROENTEROLOGY 2002;123:2005-201

    Enteroendocrine cells express functional Toll-like receptors

    Get PDF
    Intestinal epithelial cells (IECs) provide a physical and immunological barrier against enteric microbial flora. Toll-like receptors (TLRs), through interactions with conserved microbial patterns, activate inflammatory gene expression in cells of the innate immune system. Previous studies of the expression and function of TLRs in IECs have reported varying results. Therefore, TLR expression was characterized in human and murine intestinal sections, and TLR function was tested in an IEC line. TLR1, TLR2, and TLR4 are coexpressed on a subpopulation of human and murine IECs that reside predominantly in the intestinal crypt and belong to the enteroendocrine lineage. An enteroendocrine cell (EEC) line demonstrated a similar expression pattern of TLRs as primary cells. The murine EEC line STC-1 was activated with specific TLR ligands: LPS or synthetic bacterial lipoprotein. In STC-1 cells stimulated with bacterial ligands, NF-κB and MAPK activation was demonstrated. Furthermore, the expression of TNF and macrophage inhibitory protein-2 were induced. Additionally, bacterial ligands induced the expression of the anti-inflammatory gene transforming growth factor-β. LPS triggered a calcium flux in STC-1 cells, resulting in a rapid increase in CCK secretion. Finally, conditioned media from STC-1 cells inhibited the production of nitric oxide and IL-12 p40 by activated macrophages. In conclusion, human and murine IECs that express TLRs belong to the enteroendocrine lineage. Using a murine EEC model, a broad range of functional effects of TLR activation was demonstrated. This study suggests a potential role for EECs in innate immune responses

    CD180 Ligation Inhibits TLR7- and TLR9-Mediated Activation of Macrophages and Dendritic Cells Through the Lyn-SHP-1/2 Axis in Murine Lupus

    Get PDF
    Activation of TLR7 and TLR9 by endogenous RNA- or DNA-containing ligands, respectively, can lead to hyper-activation of immune cells, including macrophages and DCs, subsequently contributes to the pathogenesis of SLE. CD180, a TLR-like protein, is specifically involved in the development and activation of immune cells. Our previous study and others have reported that CD180-negative B cells are dramatically increased in SLE patients and responsible for the production of auto-antibodies. However, the mode of CD180 expression on macrophages and DCs in SLE remains unclear and the role of CD180 on regulating TLR7- and TLR9-mediated activation of macrophages and DCs are largely unknown. In the present study, we found that the percentages of CD180-negative macrophages and DCs were both increased in SLE patients and lupus-prone MRL/lpr mice compared with healthy donors and wild-type mice, respectively. Notably, ligation of CD180 significantly inhibited the activation of TLR7 and TLR9 signaling pathways in macrophages and DCs through the Lyn-SHP-1/2 axis. What's more, injection of anti-CD180 Ab could markedly ameliorate the lupus-symptoms of imiquimod-treated mice and lupus-prone MRL/lpr mice through inhibiting the activation of macrophages and DCs. Collectively, our results highlight a critical role of CD180 in regulating TLR7- and TLR9-mediated activation of macrophages and DCs, hinting that CD180 can be regarded as a potential therapeutic target for SLE treatment

    Transplanted adult human hepatic stem/progenitor cells prevent histogenesis of advanced hepatic fibrosis in mice induced by carbon tetrachloride

    Get PDF
    Transplantation of adult human hepatic stem/progenitor cells (hHSPCs) has been considered as an alternative therapy, replacing donor liver transplantation to treat liver cirrhosis. This study assessed the antifibrotic effects of hHSPCs in mice with fibrosis induced by carbon tetrachloride (CCI4) and examined the actions of hHSPCs on the fibrogenic activity of human hepatic stellate cells (HSCs) in a coculture system. Isolated hHSPCs expressed stem/progenitor cell phenotypic markers. Mice were given CCl4 (twice weekly for 7 weeks) and hHSPC transplantation weekly. CCl4 induced advanced fibrosis (bridging fibrosis and cirrhosis) in mice, which was prevented by hHSPC transplantation. The liver of hHSPC-transplanted mice showed only occasional short septa and focal parenchymal fibrosis, and a 50% reduction in hepatic collagen, assessed by Sirius red stain histomorphometry. Moreover, the proteins for a-smooth muscle actin (alpha-SMA) and collagen I were decreased. While alpha-SMA, collagen alpha 1(I), and tissue inhibitor of metalloproproteinase-1 mRNAs were decreased, matrix metalloproteinase (MMP)-1 mRNA was increased, consistent with decreased fibrogenesis. MMP-2 and transforming growth factor-beta were not affected. Alanine aminotransferase and aspartate aminotransferase were lower, suggesting improvement of liver function/damage. In coculture, hHSPCs elicited changes of alpha-SMA and fibrogenic molecules in HSCs similar to those observed in vivo, providing evidence for a functional link between hHSPCs and HSCs. A decreased HSC proliferation was noted. Thus, transplantation of hHSPCs prevents histogenesis of advanced liver fibrosis caused by CCl4. hHSPCs mediate down-regulation of HSC activation coincident with modulation of fibrogenic molecule expression, leading to suppression of fibrogenesis both in vivo and in vitro

    Моделирование формирования структуры металломатричных композитов в процессе синтеза с оценкой эффективных свойств

    Get PDF
    Работа посвящена моделированию процесса кристаллизации композита с металлической матрицей и твердыми включениями с учетом условий синтеза (давление, скорость охлаждения), моделированию процесса формирования переходной зоны между частицами и матрицей и расчету эффективных свойств получаемых композитов.The work is devoted to modeling the crystallization process of metal matrix composite with solid inclusions, taking into account the synthesis conditions (pressure, cooling rate), to modeling the formation of the transition zone between particles and matrix, and calculating the effective properties of the resulting composites

    Distinct Roles of Brd2 and Brd4 in Potentiating the Transcriptional Program for Th17 Cell Differentiation

    Get PDF
    The BET proteins are major transcriptional regulators and have emerged as new drug targets, but their functional distinction has remained elusive. In this study, we report that the BET family members Brd2 and Brd4 exert distinct genomic functions at genes whose transcription they co-regulate during mouse T-helper 17 (Th17) cell differentiation. Brd2 is associated with the chromatin insulator CTCF and the cohesin complex to support cis-regulatory enhancer assembly for gene transcriptional activation. In this context, Brd2 binds the transcription factor Stat3 in an acetylation-sensitive manner and facilitates Stat3 recruitment to active enhancers occupied with transcription factors Irf4 and Batf. In parallel, Brd4 temporally controls RNA polymerase II (Pol II) processivity during transcription elongation through cyclinT1/Cdk9 recruitment and Pol II Ser2 phosphorylation. Collectively, our study uncovers both separate and interdependent Brd2 and Brd4 functions in potentiating the genetic program required for Th17 cell development and adaptive immunity., , Cheung et al. uncover both separate and interdependent Brd2 and Brd4 genomic functions in potentiating the genetic program required for Th17 cell development and adaptive immunity. Brd2 interacts with transcription factor Stat3 and chromatin insulator CTCF/cohesin complex to support enhancer assembly, whereas Brd4 temporally controls RNA PolII for transcription elongation

    5-Fluorouracil targets thymidylate synthase in the selective suppression of TH17 cell differentiation

    Get PDF
    While it is well established that treatment of cancer patients with 5-Fluorouracil (5-FU) can result in immune suppression, the exact function of 5-FU in the modulation of immune cells has not been fully established. We found that low dose 5-FU selectively suppresses TH17 and TH1 cell differentiation without apparent effect on Treg, TH2, and significantly suppresses thymidylate synthase (TS) expression in TH17 and TH1 cells but has a lesser effect in tumor cells and macrophages. Interestingly, the basal expression of TS varies significantly between T helper phenotypes and knockdown of TS significantly impairs TH17 and TH1 cell differentiation without affecting the differentiation of either Treg or TH2 cells. Finally, low dose 5-FU is effective in ameliorating colitis development by suppressing TH17 and TH1 cell development in a T cell transfer colitis model. Taken together, the results highlight the importance of the anti-inflammatory functions of low dose 5-FU by selectively suppressing TH17 and TH1 immune responses
    corecore