12,063 research outputs found
Optimizing production scheduling of steel plate hot rolling for economic load dispatch under time-of-use electricity pricing
Time-of-Use (TOU) electricity pricing provides an opportunity for industrial
users to cut electricity costs. Although many methods for Economic Load
Dispatch (ELD) under TOU pricing in continuous industrial processing have been
proposed, there are still difficulties in batch-type processing since power
load units are not directly adjustable and nonlinearly depend on production
planning and scheduling. In this paper, for hot rolling, a typical batch-type
and energy intensive process in steel industry, a production scheduling
optimization model for ELD is proposed under TOU pricing, in which the
objective is to minimize electricity costs while considering penalties caused
by jumps between adjacent slabs. A NSGA-II based multi-objective production
scheduling algorithm is developed to obtain Pareto-optimal solutions, and then
TOPSIS based multi-criteria decision-making is performed to recommend an
optimal solution to facilitate filed operation. Experimental results and
analyses show that the proposed method cuts electricity costs in production,
especially in case of allowance for penalty score increase in a certain range.
Further analyses show that the proposed method has effect on peak load
regulation of power grid.Comment: 13 pages, 6 figures, 4 table
Magnetic-field-controlled negative differential conductance in graphene npn junction resonators
Negative differential conductance (NDC), characterized by the decreasing
current with increasing voltage, has attracted continuous attention for its
various novel applications. The NDC typically exists in a certain range of bias
voltages for a selected system and controlling the regions of NDC in curves of
current versus voltage (I-V) is experimentally challenging. Here, we
demonstrate an unusual magnetic-field-controlled NDC in graphene npn junction
resonators. The magnetic field not only can switch on and off the NDC, but also
can continuously tune the regions of the NDC in the I-V curves. In the graphene
npn junction resonators, magnetic fields generate sharp and pronounced
Landau-level peaks with the help of the Klein tunneling of massless Dirac
fermions. A tip of scanning tunneling microscope induces a relatively shift of
the Landau levels in graphene beneath the tip. Tunneling between the misaligned
Landau levels results in the magnetic-field-controlled NDC that may have
potential applications for future graphene-based technology.Comment: 4 figures in main tex
Quantification of atherosclerotic plaque volume in coronary arteries by computed tomographic angiography in subjects with and without diabetes.
BackgroundDiabetes mellitus (DM) is considered a cardiovascular risk factor. The aim of this study was to analyze the prevalence and volume of coronary artery plaque in patients with diabetes mellitus (DM) vs. those without DM.MethodsThis study recruited consecutive patients who underwent coronary computed tomography (CT) angiography (CCTA) between October 2016 and November 2017. Personal information including conventional cardiovascular risk factors was collected. Plaque phenotypes were automatically calculated for volume of different component. The volume of different plaque was compared between DM patients and those without DM.ResultsAmong 6381 patients, 931 (14.59%) were diagnosed with DM. The prevalence of plaque in DM subjects was higher compared with nondiabetic group significantly (48.34% vs. 33.01%, χ = 81.84, P < 0.001). DM was a significant risk factor for the prevalence of plaque in a multivariate model (odds ratio [OR] = 1.465, 95% CI: 1.258-1.706, P < 0.001). The volume of total plaque and any plaque subtypes in the DM subjects was greater than those in nondiabetic patients significantly (P < 0.001).ConclusionThe coronary artery atherosclerotic plaques were significantly higher in diabetic patients than those in non-diabetic patients
Density alteration in non-physiological cells
In the present study an important phenomenon of cells was discovered: the change of intracellular density in cell's response to drug and environmental factors. For convenience, this phenomenon is named as "density alteration in non-physiological cells" ( DANCE). DANCE was determined by discontinuous sucrose gradient centrifugation (DSGC), in which cells were separated into several bands. The number and position of the bands in DSGC varied with the change of cell culture conditions, drugs, and physical process, indicating that cell's response to these factors was associated with alteration of intracellular density. Our results showed that the bands of cells were molecularly different from each other, such as the expression of some mRNAs. For most cells tested, intracellular density usually decreased when the cells were in bad conditions, in presence of drugs, or undergoing pathological changes. However, unlike other tissue cells, brain cells showed increased intracellular density in 24 hrs after the animal death. In addition, DANCE was found to be related to drug resistance, with higher drug-resistance in cells of lower intracellular density. Further study found that DANCE also occurred in microorganisms including bacteria and fungus, suggesting that DANCE might be a sensitive and general response of cells to drugs and environmental change. The mechanisms for DANCE are not clear. Based on our study the following causes were hypothesized: change of metabolism mode, change of cell membrane function, and pathological change. DANCE could be important in medical and biological sciences. Study of DANCE might be helpful to the understanding of drug resistance, development of new drugs, separation of new subtypes from a cell population, forensic analysis, and importantly, discovery of new physiological or pathological properties of cells
Role of Leptin in Metabolic Adaptation During Cold Acclimation
Chronic cold exposure stimulates thermogenesis in brown adipose tissue, resulting in fat mobilization and compensatory hyperphagia. Mostly, these physiological events are accompanied by a remarkable reduction in serum leptin levels. However, the physiological roles of hypoleptinemia in cold adaptation are still not fully clear. We hypothesized that leptin is the keystone of the regulatory systems linking energy balance to cold adaptation. Leptin treatment (5μg/day) decreased food intake, body weight, serum ghrelin levels and hypothalamic melanin-concentrating hormone (MCH) gene expression. Food restriction in the pair-fed group mimicked most of the effects induced by leptin treatment. Central coadministration of ghrelin (1.2 μg/day) partially reversed the effect of leptin on hypothalamic MCH mRNA, but it did not block the reducing effects of leptin on food intake, body weight and serum ghrelin levels. In addition, hypothalamic pro-opiomelanocortin gene expression increased significantly in response to the coadministration of leptin and ghrelin. Collectively, we conclude that the regulatory effects of leptin on energy balance in cold-acclimated rats are dependent on feeding, which may involve the reduction of hypothalamic MCH gene expression. We found no evidence for ghrelin involvement in the regulation of leptin on food intake and body weight during cold acclimation
- …
