306 research outputs found

    Erratum to: Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4 Nanoparticles Through a Simple Hydrothermal Condition

    Get PDF
    <p>Abstract</p> <p>Nearly monodisperse cobalt ferrite (CoFe<sub>2</sub>O<sub>4</sub>) nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid&#8211;solid-solution (LSS) process. Magnetic measurement indicates that the particles exhibit a very high coercivity at 10 K and perform superparamagnetism at room temperature which is further illuminated by ZFC/FC curves. These superparamagnetic cobalt ferrite nanomaterials are considered to have potential application in the fields of biomedicine. The synthesis method is possible to be a general approach for the preparation of other pure binary and ternary compounds.</p

    N-substituted benzamides inhibit NFκB activation and induce apoptosis by separate mechanisms

    Get PDF
    Benzamides have been in clinical use for many years in treatment against various disorders. A recent application is that as a sensitizer for radio- or chemotherapies. We have here analysed the mechanism of action of N-substituted benzamides using an in vitro system. We found that while procainamide was biologically inert in our system, the addition of a chloride in the 3′ position of the benzamide ring created a compound (declopramide) that induced rapid apoptosis. Furthermore, declopramide also inhibited NFκB activation by inhibition of IκBβ breakdown. An acetylated variant of declopramide, N-acetyl declopramide, showed no effect with regard to rapid apoptosis induction but was a potent inhibitor of NFκB activation. In fact, the addition of an acetyl group to procainamide in the 4′ position was sufficient to convert this biologically inactive substance to a potent inhibitor of NFκB activation. These findings suggest two potential mechanisms, induction of early apoptosis and inhibition of NFκB mediated salvage from apoptosis, for the biological effect of N-substituted benzamides as radio- and chemo-sensitizers. In addition it suggests that N-substituted benzamides are potential candidates for the development of anti-inflammatory compounds using NFκB as a drug target. © 1999 Cancer Research Campaig

    Development of an immunochromatographic test for diagnosis of visceral leishmaniasis based on detection of a circulating antigen

    Get PDF
    Background Visceral leishmaniasis (VL) is a life-threatening disease caused by protozoan parasites of the Leishmania donovani complex. Early case detection followed by adequate treatment is essential to the control of VL. However, the available diagnostic tests are either invasive and require considerable expertise (parasitological demonstration of the parasite in tissue smears) or unable to distinguish between past and active infection (serological methods). Therefore, we aimed to develop a lateral flow assay in the form of an immunochromatographic test (ICT) device based on the detection of a circulating Leishmania antigen using monoclonal antibodies (mAbs). Methodology/Principal Findings mAbs were produced by fusion of murine myeloma cells with splenocytes isolated from a mouse immunized with L. donovani soluble crude antigen. Out of 12 cloned hybridoma cell lines, two secreted mAbs recognizing the same leishmanial protein. These mAbs were used to produce an ICT as a sandwich assay for the detection of circulating antigen in serum and blood samples. The ICT was evaluated with 213 serum samples from VL patients living in VL endemic areas in China, and with 156 serum samples from patients with other diseases as well as 78 serum samples from healthy donors. Sensitivity, specificity and diagnostic efficiency of the new ICT was 95.8%, 98.7% and 97.3%, respectively. Compared with a commercially available antibody detecting ICT, our antigen-based ICT performed slightly better. Conclusion/Significance The newly developed ICT is an easy to use and more accurate diagnostic tool which fulfils the performance and operational characteristics required for VL case detection under field and laboratory conditions. As our ICT detects a circulating antigen, it will also be useful in monitoring treatment success and diagnosing VL in immunocompromised patients

    Caveolae-dependent and -independent uptake of albumin in cultured rodent pulmonary endothelial cells

    Get PDF
    Although a critical role for caveolae-mediated albumin transcytosis in pulmonary endothelium is well established, considerably less is known about caveolae-independent pathways. In this current study, we confirmed that cultured rat pulmonary microvascular (RPMEC) and pulmonary artery (RPAEC) endothelium endocytosed Alexa488-labeled albumin in a saturable, temperature-sensitive mode and internalization resulted in co-localization by fluorescence microscopy with cholera B toxin and caveolin-1. Although siRNA to caveolin-1 (cav-1) in RPAEC significantly inhibited albumin uptake, a remnant portion of albumin uptake was cav-1-independent, suggesting alternative pathways for albumin uptake. Thus, we isolated and cultured mouse lung endothelial cells (MLEC) from wild type and cav-1-/- mice and noted that ∼ 65% of albumin uptake, as determined by confocal imaging or live cell total internal reflectance fluorescence microscopy (TIRF), persisted in total absence of cav-1. Uptake of colloidal gold labeled albumin was evaluated by electron microscopy and demonstrated that albumin uptake in MLEC from cav-1-/- mice was through caveolae-independent pathway(s) including clathrin-coated pits that resulted in endosomal accumulation of albumin. Finally, we noted that albumin uptake in RPMEC was in part sensitive to pharmacological agents (amiloride [sodium transport inhibitor], Gö6976 [protein kinase C inhibitor], and cytochalasin D [inhibitor of actin polymerization]) consistent with a macropinocytosis-like process. The amiloride sensitivity accounting for macropinocytosis also exists in albumin uptake by both wild type and cav-1 -/- MLEC. We conclude from these studies that in addition to the well described caveolar-dependent pulmonary endothelial cell endocytosis of albumin, a portion of overall uptake in pulmonary endothelial cells is cav-1 insensitive and appears to involve clathrin-mediated endocytosis and macropinocytosis-like process. © 2013 Li et al

    Synaptic Responses Evoked by Tactile Stimuli in Purkinje Cells in Mouse Cerebellar Cortex Crus II In Vivo

    Get PDF
    Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs) via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice.Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6-8-week-old) HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0), the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs) in the somata of PCs. Application of SR95531, a specific GABA(A) receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs) in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation.These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABA(A) receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice

    Differential Regulation and Recovery of Intracellular Ca2+ in Cerebral and Small Mesenteric Arterial Smooth Muscle Cells of Simulated Microgravity Rat

    Get PDF
    BACKGROUND: The differential adaptations of cerebrovasculature and small mesenteric arteries could be one of critical factors in postspaceflight orthostatic intolerance, but the cellular mechanisms remain unknown. We hypothesize that there is a differential regulation of intracellular Ca(2+) determined by the alterations in the functions of plasma membrane Ca(L) channels and ryanodine-sensitive Ca(2+) releases from sarcoplasmic reticulum (SR) in cerebral and small mesenteric vascular smooth muscle cells (VSMCs) of simulated microgravity rats, respectively. METHODOLOGY/PRINCIPAL FINDINGS: Sprague-Dawley rats were subjected to 28-day hindlimb unweighting to simulate microgravity. In addition, tail-suspended rats were submitted to a recovery period of 3 or 7 days after removal of suspension. The function of Ca(L) channels was evaluated by patch clamp and Western blotting. The function of ryanodine-sensitive Ca(2+) releases in response to caffeine were assessed by a laser confocal microscope. Our results indicated that simulated microgravity increased the functions of Ca(L) channels and ryanodine-sensitive Ca(2+) releases in cerebral VSMCs, whereas, simulated microgravity decreased the functions of Ca(L) channels and ryanodine-sensitive Ca(2+) releases in small mesenteric VSMCs. In addition, 3- or 7-day recovery after removal of suspension could restore the functions of Ca(L) channels and ryanodine-sensitive Ca(2+) releases to their control levels in cerebral and small mesenteric VSMCs, respectively. CONCLUSIONS: The differential regulation of Ca(L) channels and ryanodine-sensitive Ca(2+) releases in cerebral and small mesenteric VSMCs may be responsible for the differential regulation of intracellular Ca(2+), which leads to the altered autoregulation of cerebral vasculature and the inability to adequately elevate peripheral vascular resistance in postspaceflight orthostatic intolerance
    • …
    corecore