4,900 research outputs found

    Optimizing production scheduling of steel plate hot rolling for economic load dispatch under time-of-use electricity pricing

    Get PDF
    Time-of-Use (TOU) electricity pricing provides an opportunity for industrial users to cut electricity costs. Although many methods for Economic Load Dispatch (ELD) under TOU pricing in continuous industrial processing have been proposed, there are still difficulties in batch-type processing since power load units are not directly adjustable and nonlinearly depend on production planning and scheduling. In this paper, for hot rolling, a typical batch-type and energy intensive process in steel industry, a production scheduling optimization model for ELD is proposed under TOU pricing, in which the objective is to minimize electricity costs while considering penalties caused by jumps between adjacent slabs. A NSGA-II based multi-objective production scheduling algorithm is developed to obtain Pareto-optimal solutions, and then TOPSIS based multi-criteria decision-making is performed to recommend an optimal solution to facilitate filed operation. Experimental results and analyses show that the proposed method cuts electricity costs in production, especially in case of allowance for penalty score increase in a certain range. Further analyses show that the proposed method has effect on peak load regulation of power grid.Comment: 13 pages, 6 figures, 4 table

    The sensitivity and specificity of one field non-mydriatic digital fundus photography for DR screening

    Get PDF
    AIM:To evaluate the sensitivity and specificity of one-field non-mydriatic digital fundus photography and direct ophthalmoscopy for diabetic retinopathy(DR)screening, compared with fundus fluorescein angiography( FFA ).<p>METHODS:All 93 patients of type 1 or 2 diabetic who have underwent one-field non-mydriatic digital fundus photography, and direct ophthalmoscopy with dilation of their pupils, and FFA by ophthalmologists. The sensitivity and specificity of one-field non-mydriatic digital fundus photography and direct ophthalmoscopy were calculated respectively, compared with FFA.<p>RESULTS: The sensitivity and specificity of one-field non-mydriatic digital fundus photography for detection of any DR were 80.4% and 94.7%; The sensitivity and specificity of direct ophthalmoscopy for detection of any DR were 64.2% and 84.2%; After the standard for referable DR being lowered down to the moderate non-proliferative diabetic retinopathy(M-NPDR), the sensitivity and specificity of non-mydriatic digital fundus photography for detection were 88.9% and 98.4%, the sensitivity and specificity of direct ophthalmoscopy for detection were 71.5% and 96.7%.<p>CONCLUSION: One-field non-mydriatic digital fundus photography is an effective method for DR screening

    Reinforcement Learning Approaches for Traffic Signal Control under Missing Data

    Full text link
    The emergence of reinforcement learning (RL) methods in traffic signal control tasks has achieved better performance than conventional rule-based approaches. Most RL approaches require the observation of the environment for the agent to decide which action is optimal for a long-term reward. However, in real-world urban scenarios, missing observation of traffic states may frequently occur due to the lack of sensors, which makes existing RL methods inapplicable on road networks with missing observation. In this work, we aim to control the traffic signals in a real-world setting, where some of the intersections in the road network are not installed with sensors and thus with no direct observations around them. To the best of our knowledge, we are the first to use RL methods to tackle the traffic signal control problem in this real-world setting. Specifically, we propose two solutions: the first one imputes the traffic states to enable adaptive control, and the second one imputes both states and rewards to enable adaptive control and the training of RL agents. Through extensive experiments on both synthetic and real-world road network traffic, we reveal that our method outperforms conventional approaches and performs consistently with different missing rates. We also provide further investigations on how missing data influences the performance of our model.Comment: Published as a conference paper at IJCAI202

    Ethyl 3-bromo-1-(3-chloro-2-pyrid­yl)-4,5-dihydro-1H-pyrazole-5-carboxyl­ate

    Get PDF
    The title compound, C11H11BrClN3O2, contains two mol­ecules in the asymmetric unit in which the dihedral angles between the pyrazole and pyridine rings are 30.0 (2) and 22.3 (2)°

    Density alteration in non-physiological cells

    Get PDF
    In the present study an important phenomenon of cells was discovered: the change of intracellular density in cell&#x27;s response to drug and environmental factors. For convenience, this phenomenon is named as &#x22;density alteration in non-physiological cells&#x22; ( DANCE). DANCE was determined by discontinuous sucrose gradient centrifugation (DSGC), in which cells were separated into several bands. The number and position of the bands in DSGC varied with the change of cell culture conditions, drugs, and physical process, indicating that cell&#x27;s response to these factors was associated with alteration of intracellular density. Our results showed that the bands of cells were molecularly different from each other, such as the expression of some mRNAs. For most cells tested, intracellular density usually decreased when the cells were in bad conditions, in presence of drugs, or undergoing pathological changes. However, unlike other tissue cells, brain cells showed increased intracellular density in 24 hrs after the animal death. In addition, DANCE was found to be related to drug resistance, with higher drug-resistance in cells of lower intracellular density. Further study found that DANCE also occurred in microorganisms including bacteria and fungus, suggesting that DANCE might be a sensitive and general response of cells to drugs and environmental change. The mechanisms for DANCE are not clear. Based on our study the following causes were hypothesized: change of metabolism mode, change of cell membrane function, and pathological change. DANCE could be important in medical and biological sciences. Study of DANCE might be helpful to the understanding of drug resistance, development of new drugs, separation of new subtypes from a cell population, forensic analysis, and importantly, discovery of new physiological or pathological properties of cells
    corecore