36 research outputs found

    Digital Microfluidics Sample Analyzer

    Get PDF
    Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform

    Huntingtin forms toxic NH2-terminal fragment complexes that are promoted by the age-dependent decrease in proteasome activity

    Get PDF
    Although NH2-terminal mutant huntingtin (htt) fragments cause neurological disorders in Huntington's disease (HD), it is unclear how toxic htt fragments are generated and contribute to the disease process. Here, we report that complex NH2-terminal mutant htt fragments smaller than the first 508 amino acids were generated in htt-transfected cells and HD knockin mouse brains. These fragments constituted neuronal nuclear inclusions and appeared before neurological symptoms. The accumulation and aggregation of these htt fragments were associated with an age-dependent decrease in proteasome activity and were promoted by inhibition of proteasome activity. These results suggest that decreased proteasome activity contributes to late onset htt toxicity and that restoring the ability to remove NH2-terminal fragments will provide a more effective therapy for HD than inhibiting their production

    A versatile microreactor platform featuring a chemical-resistant microvalve array for addressable multiplex syntheses and assays

    Full text link
    A versatile microreactor platform featuring a novel chemical-resistant microvalve array has been developed using combined silicon/polymer micromachining and a special polymer membrane transfer process. The basic valve unit in the array has a typical ‘transistor’ structure and a PDMS/parylene double-layer valve membrane. A robust multiplexing algorithm is also proposed for individual addressing of a large array using a minimal number of signal inputs. The in-channel microvalve is leakproof upon pneumatic actuation. In open status it introduces small impedance to the fluidic flow, and allows a significantly larger dynamic range of flow rates (∌ml min−1) compared with most of the microvalves reported. Equivalent electronic circuits were established by modeling the microvalves as PMOS transistors and the fluidic channels as simple resistors to provide theoretical prediction of the device fluidic behavior. The presented microvalve/reactor array showed excellent chemical compatibility in the tests with several typical aggressive chemicals including those seriously degrading PDMS-based microfluidic devices. Combined with the multiplexing strategy, this versatile array platform can find a variety of lab-on-a-chip applications such as addressable multiplex biochemical synthesis/assays, and is particularly suitable for those requiring tough chemicals, large flow rates and/or high-throughput parallel processing. As an example, the device performance was examined through the addressed synthesis of 30-mer DNA oligonucleotides followed by sequence validation using on-chip hybridization. The results showed leakage-free valve array addressing and proper synthesis in target reactors, as well as uniform flow distribution and excellent regional reaction selectivity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49051/2/jmm6_8_001.pd

    Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations

    Full text link
    Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expand PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They are significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values < 0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice

    Deciphering colorectal cancer genetics through multi-omic analysis of 100,204 cases and 154,587 controls of European and east Asian ancestries

    Get PDF
    In the version of this article initially published, the author affiliations incorrectly listed “Candiolo Cancer Institute FPO-IRCCS, Candiolo (TO), Italy” as “Candiolo Cancer Institute, Candiolo, Italy.” The change has been made to the HTML and PDF versions of the article

    Fine-mapping analysis including over 254,000 East Asian and European descendants identifies 136 putative colorectal cancer susceptibility genes

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal variants and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases and 154,587 controls of East Asian and European ancestry. Our stepwise conditional analyses revealed 238 independent association signals of CRC risk, each with a set of credible causal variants (CCVs), of which 28 signals had a single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal tissue-specific transcriptome and methylome data separately from 1299 and 321 individuals, along with functional genomic investigation, uncovered 136 putative CRC susceptibility genes, including 56 genes not previously reported. Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 putative CRC susceptibility genes with distinct expression patterns in specific cell types. Analyses of whole exome sequencing data provided additional support for several target genes identified in this study as CRC susceptibility genes. Enrichment analyses of the 136 genes uncover pathways not previously linked to CRC risk. Our study substantially expanded association signals for CRC and provided additional insight into the biological mechanisms underlying CRC development

    Microreactor array platform featuring MEMS/microfluidic components for addressable multiplex synthesis and assays.

    Full text link
    There has been a rapidly growing interest in the large-scale integration of chemical and biomedical processes on microchips which is analogous to the concepts of VLSI microelectronic circuits. We are specifically developing microarray platforms that can provide parallel processing of many distinct reactions/assays, and therefore allow multiplex experiments such as large-scale screening and discovery to be conducted with unprecedented speed and at substantially reduced costs. Microfluidic components are integrated into the microarray platform to achieve reliable on-chip flow manipulation. We first developed a compact microvalve array with improved chemical resistance. The device was fabricated using combined silicon and polymer micromachining. A robust multiplexing algorithm was also proposed to minimize the number of signal inputs required to address a large array. Then we successfully fabricated a microreactor platform featuring active array addressing by the chemical-resistant microvalve array. This versatile microarray demonstrates superior chemical compatibility and ability to handle large dynamic range of flow rates; and therefore supports a wide spectrum of reactions/processes. Next, a novel light-writable microactuator array is presented. This work features the innovative use of a digital projector to provide patterned heating on the microchip through focused light patterns. This unique approach can achieve simultaneous thermal actuation of arbitrary units in a microactuator array with exceptional ease and flexibility. We also implemented a unique latched operation using phase change of paraffin wax, which allows the device to self-maintain the actuation status without the need for external energy or force. Finally we integrated the microactuator array and bell-shape microfluidic channels to develop a normally closed and light-configurable microfluidic network. This network maintains its configuration without using any power, behaving like a microfluidic flash memory. We believe the proposed approach provides a unique array solution with unparalleled convenience and flexibility for lab-on-a-chip systems.Ph.D.Applied SciencesChemical engineeringElectrical engineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/126171/2/3237975.pd
    corecore