3,602 research outputs found

    Tuberostemoamide hemihydrate

    Get PDF
    In the crystal structure of the title compound {systematic name: (1′S,2R,2′R,3′S,6′R)-3′-ethyl-4-methyl-5H-5′-oxa-10′-aza­spiro­[furan-2,4′-tricyclo­[8.3.0.02,6]trideca­ne]-5,11′-dione hemihydrate}, C17H23NO4·0.5H2O, the asymmetric unit contains two mol­ecules of tuberostemoamide with similar conformations and one water mol­ecule. The tuberostemoamide mol­ecule is composed of one seven-membered ring (A) and three five-membered rings (B, C and D). Ring A exists in a chair conformation, both rings B and C exist in envelope conformations, and ring D is almost planar with a mean deviation of 0.0143 (4) Å in one molecule and 0.0095 (3) Å in the other.. The dihedral angles between the planes of rings C and D are 75.1 (3)° in one mol­ecule and 74.5 (3)° for the other. The solvent water mol­ecule links the tuberostemoamide mol­ecules through O—H⋯O(ketone) hydrogen bonds. Weak C—H⋯O inter­actions are also present, involving both the water mol­ecule and a heterocyclic ether O-atom acceptor

    hSef potentiates EGF-mediated MAPK signaling through affecting EGFR trafficking and degradation

    Get PDF
    Sef (similar expression to fgf genes) was identified as an effective antagonist of fibroblast growth factor (FGF) in vertebrates. Previous reports have demonstrated that Sef interacts with FGF receptors (FGFRs) and inhibits FGF signaling, however, its role in regulating epidermal growth factor receptor (EGFR) signaling remains unclear. In this report, we found that hSef localizes to the plasma membrane (PM) and is subjected to rapid internalization and well localizes in early/recycling endosomes while poorly in late endosomes/lysosomes. We observed that hSef interacts and functionally colocalizes with EGFR in early endosomes in response to EGF stimulation. Importantly, we demonstrated that overexpression of hSef attenuates EGFR degradation and potentiates EGF-mediated mitogen-activated protein kinase (MAPK) signaling by interfering EGFR trafficking. Finally, our data showed that, with overexpression of hSef, elevated levels of Erk phosphorylation and differentiation of rat pheochromocytoma (PC12) cells occur in response to EGF stimulation. Taken together, these data suggest that hSef plays a positive role in the EGFR-mediated MAPK signaling pathway. This report, for the first time, reveals opposite roles for Sef in EGF and FGF signalings

    Baicalein enhances the osteogenic differentiation of human periodontal ligament cells by activating the Wnt/β-catenin signaling pathway

    Get PDF
    Objective Periodontium regeneration is one of the most important processes for periodontitis therapy. Human periodontal ligament cells (hPDLCs) play a vital role in the repair and regeneration of periodontal tissues. Our study aimed to investigated the mechanisms underlying the promotion of hPLDCs osteogenic differentiation by baicalein. Design hPDLCs were obtained from periodontal ligament (PDL) tissues by primary culture. The MTT assay was used to determine the growth curves of hPDLCs treated with different concentrations of baicalein (1.25, 2.5, 5, or 10\ua0μM). Alkaline phosphatase (ALP) staining and Alizarin red S staining were performed to assess osteogenic differentiation of hPDLCs administered baicalein. Osteogenic differentiation-related gene and protein expression levels and Wnt/β-catenin pathway signal changes were assessed by qRT-PCR and Western blotting analysis. Results The results showed that baicalein decreased the growth of hPDLCs slightly and increased ALP activity and calcium deposition in a dose-dependent manner. The expression of runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), Osterix (OSX) and osteocalcin (OCN) were elevated after baicalein administration. Moreover, baicalein strongly activated the Wnt/β-catenin pathway and up-regulated the expression of β-catenin, lymphoid enhancer factor 1 (LEF1) and Cyclin D1. Dickkopf-related protein 1 (DKK-1) significantly reversed the effects of baicalein on hPDLCs. Conclusions Our findings indicated that baicalein enhanced the osteogenic differentiation of hPDLCs via the activation of the Wnt/β-catenin signaling pathway, which may represent a potential candidate for periodontitis therapy

    Human GPR17 missense variants identified in metabolic disease patients have distinct downstream signaling profiles

    Get PDF
    GPR17 is a G-protein-coupled receptor (GPCR) implicated in the regulation of glucose metabolism and energy homeostasis. Such evidence is primarily drawn from mouse knockout studies and suggests GPR17 as a potential novel therapeutic target for the treatment of metabolic diseases. However, links between human GPR17 genetic variants, downstream cellular signaling, and metabolic diseases have yet to be reported. Here, we analyzed GPR17 coding sequences from control and disease cohorts consisting of individuals with adverse clinical metabolic deficits including severe insulin resistance, hypercholesterolemia, and obesity. We identified 18 nonsynonymous GPR17 variants, including eight variants that were exclusive to the disease cohort. We characterized the protein expression levels, membrane localization, and downstream signaling profiles of nine GPR17 variants (F43L, V96M, V103M, D105N, A131T, G136S, R248Q, R301H, and G354V). These nine GPR17 variants had similar protein expression and subcellular localization as wild-type GPR17; however, they showed diverse downstream signaling profiles. GPR17-G136S lost the capacity for agonist-mediated cAMP, Ca2+, and β-arrestin signaling. GPR17-V96M retained cAMP inhibition similar to GPR17-WT, but showed impaired Ca2+ and β-arrestin signaling. GPR17-D105N displayed impaired cAMP and Ca2+ signaling, but unaffected agonist-stimulated β-arrestin recruitment. The identification and functional profiling of naturally occurring human GPR17 variants from individuals with metabolic diseases revealed receptor variants with diverse signaling profiles, including differential signaling perturbations that resulted in GPCR signaling bias. Our findings provide a framework for structure-function relationship studies of GPR17 signaling and metabolic disease
    corecore