60,066 research outputs found
Phase dynamics of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation
The Josephson effects associated with quantum tunneling of Cooper pairs
manifest as nonlinear relations between the superconductivity phase difference
and the bias current and voltage. Many novel phenomena appear, such as Shapiro
steps in dc cuurent-voltage (IV) characteristics of a Josephson junction under
microwave shining, which can be used as a voltage standard. Inversely, the
Josephson effects provide a unique way to generate high-frequency
electromagnetic (EM) radiation by dc bias voltage. The discovery of cuprate
high-Tc superconductors accelerated the effort to develop novel source of EM
waves based on a stack of atomically dense-packed intrinsic Josephson junctions
(IJJs), since the large superconductivity gap covers the whole terahertz
frequency band. Very recently, strong and coherent terahertz radiations have
been successfully generated from a mesa structure of
single crystal which works both as the source
of energy gain and as the cavity for resonance. It is then found theoretically
that, due to huge inductive coupling of IJJs produced by the nanometer junction
separation and the large London penetration depth of order of of
the material, a novel dynamic state is stabilized in the coupled sine-Gordon
system, in which kinks in phase differences are developed responding
to the standing wave of Josephson plasma and are stacked alternatively in the
c-axis. This novel solution of the inductively coupled sine-Gordon equations
captures the important features of experimental observations. The theory
predicts an optimal radiation power larger than the one available to date by
orders of magnitude, and thus suggests the technological relevance of the
phenomena.Comment: review article (69 pages, 30 figures
Anisotropy in the magnetic and electrical transport properties of Fe1-xCrxSb2
We have investigated anisotropy in magnetic and electrical transport
properties of Fe1-xCrxSb2 (0<= x <=1) single crystals. The magnetic ground
state of the system evolves from paramagnetic to antiferromagnetic with gradual
substitution of Fe with Cr. Anisotropy in electrical transport diminishes with
increased Cr substitution and fades away by x=0.5. We find that the variable
range hopping (VRH) conduction mechanism dominates at low temperatures for
0.4<= x <=0.75.Comment: 5 pages, 6 figure
Importance of tetrahedral coordination for high-valent transition metal oxides: YCrO as a model system
We have investigated the electronic structure of the high oxidation state
material YCrO within the framework of the Zaanen-Sawatzky-Allen phase
diagram. While Cr-based compounds like SrCrO/CaCrO and CrO
can be classified as small-gap or metallic negative-charge-transfer systems, we
find using photoelectron spectroscopy that YCrO is a robust insulator
despite the fact that its Cr ions have an even higher formal valence state of
5+. We reveal using band structure calculations that the tetrahedral
coordination of the Cr ions in YCrO plays a decisive role, namely to
diminish the bonding of the Cr states with the top of the O valence
band. This finding not only explains why the charge-transfer energy remains
effectively positive and the material stable, but also opens up a new route to
create doped carriers with symmetries different from those of other
transition-metal ions.Comment: 6 pages, 6 figure
Accumulation of three-body resonances above two-body thresholds
We calculate resonances in three-body systems with attractive Coulomb
potentials by solving the homogeneous Faddeev-Merkuriev integral equations for
complex energies. The equations are solved by using the Coulomb-Sturmian
separable expansion approach. This approach provides an exact treatment of the
threshold behavior of the three-body Coulombic systems. We considered the
negative positronium ion and, besides locating all the previously know -wave
resonances, we found a whole bunch of new resonances accumulated just slightly
above the two-body thresholds. The way they accumulate indicates that probably
there are infinitely many resonances just above the two-body thresholds, and
this might be a general property of three-body systems with attractive Coulomb
potentials.Comment: 4 pages, 3 figure
Dynamic Magneto-Conductance Fluctuations and Oscillations in Mesoscopic Wires and Rings
Using a finite-frequency recursive Green's function technique, we calculate
the dynamic magneto-conductance fluctuations and oscillations in disordered
mesoscopic normal metal systems, incorporating inter-particle Coulomb
interactions within a self-consistent potential method. In a disordered metal
wire, we observe ergodic behavior in the dynamic conductance fluctuations. At
low , the real part of the conductance fluctuations is essentially
given by the dc universal conductance fluctuations while the imaginary part
increases linearly from zero, but for greater than the Thouless energy
and temperature, the fluctuations decrease as . Similar
frequency-dependent behavior is found for the Aharonov-Bohm oscillations in a
metal ring. However, the Al'tshuler-Aronov-Spivak oscillations, which
predominate at high temperatures or in rings with many channels, are strongly
suppressed at high frequencies, leading to interesting crossover effects in the
-dependence of the magneto-conductance oscillations.Comment: 4 pages, REVTeX 3.0, 5 figures(ps file available upon request),
#phd0
A portable MBE system for in situ X-Ray investigations at synchrotron beamlines
A portable synchrotron MBE system is designed and applied for in situ
investigations. The growth chamber is equipped with all the standard MBE
components such as effusion cells with shutters, main shutter, cooling shroud,
manipulator, RHEED setup and pressure gauges. The characteristic feature of the
system is the beryllium windows which are used for in situ x-ray measurements.
An UHV sample transfer case allows in-vacuo transfer of samples prepared
elsewhere. We describe the system design and demonstrate it's performance by
investigating the annealing process of buried InGaAs self organized quantum
dots
Calorimetric Evidence of Strong-Coupling Multiband Superconductivity in Fe(Te0.57Se0.43) Single Crystal
We have investigated the specific heat of optimally-doped iron chalcogenide
superconductor Fe(Te0.57Se0.43) with a high-quality single crystal sample. The
electronic specific heat Ce of this sample has been successfully separated from
the phonon contribution using the specific heat of a non-superconducting sample
(Fe0.90Cu0.10)(Te0.57Se0.43) as a reference. The normal state Sommerfeld
coefficient gamma_n of the superconducting sample is found to be ~ 26.6 mJ/mol
K^2, indicating intermediate electronic correlation. The temperature dependence
of Ce in the superconducting state can be best fitted using a double-gap model
with 2Delta_s(0)/kBTc = 3.92 and 2Delta_l(0)/kBTc = 5.84. The large gap
magnitudes derived from fitting, as well as the large specific heat jump of
Delta_Ce(Tc)/gamma_n*Tc ~ 2.11, indicate strong-coupling superconductivity.
Furthermore, the magnetic field dependence of specific heat shows strong
evidence for multiband superconductivity
Three-potential formalism for the three-body scattering problem with attractive Coulomb interactions
A three-body scattering process in the presence of Coulomb interaction can be
decomposed formally into a two-body single channel, a two-body multichannel and
a genuine three-body scattering. The corresponding integral equations are
coupled Lippmann-Schwinger and Faddeev-Merkuriev integral equations. We solve
them by applying the Coulomb-Sturmian separable expansion method. We present
elastic scattering and reaction cross sections of the system both below
and above the threshold. We found excellent agreements with previous
calculations in most cases.Comment: 12 pages, 3 figure
- …