2,590 research outputs found

    Solar influenced late Holocene temperature changes on the northern Tibetan Plateau

    Get PDF
    Considerable efforts have been made to extend temperature records beyond the instrumental period through proxy reconstructions, in order to further understand the mechanisms of past climate variability. Yet, the global coverage of existing temperature records is still limited, especially for some key regions like the Tibetan Plateau and for earlier times including the Medieval Warm Period (MWP). Here we present decadally-resolved, alkenone-based, temperature records from two lakes on the northern Tibetan Plateau. Characterized by marked temperature variability, our records provide evidence that temperatures during the MWP were slightly higher than the modern period in this region. Further, our temperature reconstructions, within age uncertainty, can be well correlated with solar irradiance changes, suggesting a possible link between solar forcing and natural climate variability, at least on the northern Tibetan Plateau. © 2013 The Author(s).published_or_final_versio

    Case Report: The Clinical Toxicity of Dimethylamine Borane

    Get PDF
    Context: Dimethylamine borane (DMAB) is a reducing agent used in nonelectric plating of semiconductors. Exposures are usually through occupational contact. We report here four cases of people who suffered from work-related exposure to DMAB. Case presentation: Three patients exposed to DMAB decontaminated immediately by drinking a lot of water; they reported dizziness, nausea, diarrhea 6–8 hr later. The other patient did not decontaminate at once, and he suffered from more severe symptoms, including dizziness, nausea, limb numbness, slurred speech, irritable mood, and ataxia 13 hr later. Magnetic resonance imaging showed symmetric lesions with hyperintensity on T2WI and FLAIR in bilateral cerebellar dantate nuclei. This patient was readmitted to the hospital due to difficulty in walking and climbing 18 days after exposure. Lower leg weakness and drop foot were found bilaterally. A nerve conduction study revealed polyneuropathy with motor-predominant axonal degeneration. This patient receives regular outpatient followups and still walks with a clumsy gait and has difficulty with hand-grasping activity. Discussion: This case study demonstrates that DMAB is highly toxic to humans through any route of exposure, and dermal absorption is the major route of neurotoxicity. DMAB induces acute cortical and cerebellar injuries and delayed peripheral neuropathy. Relevance: Further investigation of the toxic mechanism of DMAB is warranted. Early decontamination with copious water is the best current treatment for exposure to DMAB

    Entanglement generation outside a Schwarzschild black hole and the Hawking effect

    Full text link
    We examine the Hawking effect by studying the asymptotic entanglement of two mutually independent two-level atoms placed at a fixed radial distance outside a Schwarzschild black hole in the framework of open quantum systems. We treat the two-atom system as an open quantum system in a bath of fluctuating quantized massless scalar fields in vacuum and calculate the concurrence, a measurement of entanglement, of the equilibrium state of the system at large times, for the Unruh, Hartle-Hawking and Boulware vacua respectively. We find, for all three vacuum cases, that the atoms turn out to be entangled even if they are initially in a separable state as long as the system is not placed right at the even horizon. Remarkably, only in the Unruh vacuum, will the asymptotic entanglement be affected by the backscattering of the thermal radiation off the space-time curvature. The effect of the back scatterings on the asymptotic entanglement cancels in the Hartle-Hawking vacuum case.Comment: 15 pages, no figures, Revte

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Double quantum dot with integrated charge sensor based on Ge/Si heterostructure nanowires

    Get PDF
    Coupled electron spins in semiconductor double quantum dots hold promise as the basis for solid-state qubits. To date, most experiments have used III-V materials, in which coherence is limited by hyperfine interactions. Ge/Si heterostructure nanowires seem ideally suited to overcome this limitation: the predominance of spin-zero nuclei suppresses the hyperfine interaction and chemical synthesis creates a clean and defect-free system with highly controllable properties. Here we present a top gate-defined double quantum dot based on Ge/Si heterostructure nanowires with fully tunable coupling between the dots and to the leads. We also demonstrate a novel approach to charge sensing in a one-dimensional nanostructure by capacitively coupling the double dot to a single dot on an adjacent nanowire. The double quantum dot and integrated charge sensor serve as an essential building block required to form a solid-state spin qubit free of nuclear spin.Comment: Related work at http://marcuslab.harvard.edu and http://cmliris.harvard.ed

    Spectroscopic analysis of finite size effects around a Kondo quantum dot

    Full text link
    We consider a simple setup in which a small quantum dot is strongly connected to a finite size box. This box can be either a metallic box or a finite size quantum wire.The formation of the Kondo screening cloud in the box strongly depends on the ratio between the Kondo temperature and the box level spacing. By weakly connecting two metallic reservoirs to the quantum dot, a detailed spectroscopic analysis can be performed. Since the transport channels and the screening channels are almost decoupled, such a setup allows an easier access to the measure of finite-size effects associated with the finite extension of the Kondo cloud.Comment: contribution to Les Houches proceeding, ``Quantum magnetism'' 200

    Notes on Black Hole Fluctuations and Backreaction

    Get PDF
    In these notes we prepare the ground for a systematic investigation into the issues of black hole fluctuations and backreaction by discussing the formulation of the problem, commenting on possible advantages and shortcomings of existing works, and introducing our own approach via a stochastic semiclassical theory of gravity based on the Einstein-Langevin equation and the fluctuation-dissipation relation for a self-consistent description of metric fluctuations and dissipative dynamics of the black hole with backreaction of its Hawking radiance

    Search for K_S K_L in psi'' decays

    Full text link
    K_S K_L from psi'' decays is searched for using the psi'' data collected by BESII at BEPC, the upper limit of the branching fraction is determined to be B(psi''--> K_S K_L) < 2.1\times 10^{-4} at 90% C. L. The measurement is compared with the prediction of the S- and D-wave mixing model of the charmonia, based on the measurements of the branching fractions of J/psi-->K_S K_L and psi'-->K_S K_L.Comment: 5 pages, 1 figur

    First Measurements of eta_c Decaying into K^+K^-2(pi^+pi^-) and 3(pi^+pi^-)

    Full text link
    The decays of eta_c to K^+K^-2(pi^+pi^-) and 3(pi^+pi^-) are observed for the first time using a sample of 5.8X10^7 J/\psi events collected by the BESII detector. The product branching fractions are determined to be B(J/\psi-->gamma eta_c)*B(eta_c-->K^+K^-pi^+pi^-pi^+pi^-)=(1.21+-0.32+- 0.23)X10^{-4},B(J/ψ>gammaetac)B(etac>K0Kˉ0pi+pi)=(1.29+0.43+0.32)X104,B(J/\psi-->gamma eta_c)*B(eta_c-->K^{*0}\bar{K}^{*0}pi^+pi^-)= (1.29+-0.43+-0.32)X10^{-4}, and (J/\psi-->gamma eta_c)* B(eta_c-->pi^+pi^-pi^+pi^-pi^+pi^-)= (2.59+-0.32+-0.48)X10^{-4}. The upper limit for eta_c-->phi pi^+pi^-pi^+pi^- is also obtained as B(J/\psi-->gamma eta_c)*B(eta_c--> phi pi^+pi^-pi^+pi^-)< 6.03 X10^{-5} at the 90% confidence level.Comment: 11 pages, 4 figure
    corecore