75 research outputs found
Theory Challenges of the Accelerating Universe
The accelerating expansion of the universe presents an exciting, fundamental
challenge to the standard models of particle physics and cosmology. I highlight
some of the outstanding challenges in both developing theoretical models and
interpreting without bias the observational results from precision cosmology
experiments in the next decade that will return data to help reveal the nature
of the new physics. Examples given focus on distinguishing a new component of
energy from a new law of gravity, and the effect of early dark energy on baryon
acoustic oscillations.Comment: 10 pages, 4 figures; minor changes to match J. Phys. A versio
f(R) actions, cosmic acceleration and local tests of gravity
We study spherically symmetric solutions in f(R) theories and its
compatibility with local tests of gravity. We start by clarifying the range of
validity of the weak field expansion and show that for many models proposed to
address the Dark Energy problem this expansion breaks down in realistic
situations. This invalidates the conclusions of several papers that make
inappropriate use of this expansion. For the stable models that modify gravity
only at small curvatures we find that when the asymptotic background curvature
is large we approximately recover the solutions of Einstein gravity through the
so-called Chameleon mechanism, as a result of the non-linear dynamics of the
extra scalar degree of freedom contained in the metric. In these models one
would observe a transition from Einstein to scalar-tensor gravity as the
Universe expands and the background curvature diminishes. Assuming an adiabatic
evolution we estimate the redshift at which this transition would take place
for a source with given mass and radius. We also show that models of dynamical
Dark Energy claimed to be compatible with tests of gravity because the mass of
the scalar is large in vacuum (e.g. those that also include R^2 corrections in
the action), are not viable.Comment: 26 page
Ellipsoidal universe in the brane world
We study a scenario of the ellipsoidal universe in the brane world cosmology
with a cosmological constant in the bulk . From the five-dimensional Einstein
equations we derive the evolution equations for the eccentricity and the scale
factor of the universe, which are coupled to each other. It is found that if
the anisotropy of our universe is originated from a uniform magnetic field
inside the brane, the eccentricity decays faster in the bulk in comparison with
a four-dimensional ellipsoidal universe. We also investigate the ellipsoidal
universe in the brane-induced gravity and find the evolution equation for the
eccentricity which has a contribution determined by the four- and
five-dimensional Newton's constants. The role of the eccentricity is discussed
in explaining the quadrupole problem of the cosmic microwave background.Comment: 15 pages, 1 figure, Version 3, references added, contents expande
Modified-Source Gravity and Cosmological Structure Formation
One way to account for the acceleration of the universe is to modify general
relativity, rather than introducing dark energy. Typically, such modifications
introduce new degrees of freedom. It is interesting to consider models with no
new degrees of freedom, but with a modified dependence on the conventional
energy-momentum tensor; the Palatini formulation of theories is one
example. Such theories offer an interesting testing ground for investigations
of cosmological modified gravity. In this paper we study the evolution of
structure in these ``modified-source gravity'' theories. In the linear regime,
density perturbations exhibit scale dependent runaway growth at late times and,
in particular, a mode of a given wavenumber goes nonlinear at a higher redshift
than in the standard CDM model. We discuss the implications of this
behavior and why there are reasons to expect that the growth will be cut off in
the nonlinear regime. Assuming that this holds in a full nonlinear analysis, we
briefly describe how upcoming measurements may probe the differences between
the modified theory and the standard CDM model.Comment: 22 pages, 6 figures, uses iopart styl
Mass Screening in Modified Gravity
Models of modified gravity introduce extra degrees of freedom, which for
consistency with the data, should be suppressed at observable scales. In the
models that share properties of massive gravity such a suppression is due to
nonlinear interactions: An isolated massive astrophysical object creates a halo
of a nonzero curvature around it, shielding its vicinity from the influence of
the extra degrees of freedom. We emphasize that the very same halo leads to a
screening of the gravitational mass of the object, as seen by an observer
beyond the halo. We discuss the case when the screening could be very
significant and may rule out, or render the models observationally interesting.Comment: 16 pages, 4 figures, A contribution to the Proceedings of the
International Workshop on Cosmology and Gravitation, Peyresq 12, June 16-22,
2007, Peyresq, Franc
Observational signatures of Jordan-Brans-Dicke theories of gravity
We analyze the Jordan-Brans-Dicke model (JBD) of gravity, where deviations
from General Relativity (GR) are described by a scalar field non-minimally
coupled to gravity. The theory is characterized by a constant coupling
parameter, ; GR is recovered in the limit . In such theories, gravity modifications manifest at early times,
so that one cannot rely on the usual approach of looking for inconsistencies in
the expansion history and perturbations growth in order to discriminate between
JBD and GR. However, we show that a similar technique can be successfully
applied to early and late times observables instead. Cosmological parameters
inferred extrapolating early-time observations to the present will match those
recovered from direct late-time observations only if the correct gravity theory
is used. We use the primary CMB, as will be seen by the Planck satellite, as
the early-time observable; and forthcoming and planned Supernov{\ae}, Baryonic
Acoustic Oscillations and Weak Lensing experiments as late-time observables. We
find that detection of values of as large as 500 and 1000 is
within reach of the upcoming (2010) and next-generation (2020) experiments,
respectively.Comment: minor revision, references added, matching version published in JCA
Reconstruction of the Scalar-Tensor Lagrangian from a LCDM Background and Noether Symmetry
We consider scalar-tensor theories and reconstruct their potential U(\Phi)
and coupling F(\Phi) by demanding a background LCDM cosmology. In particular we
impose a background cosmic history H(z) provided by the usual flat LCDM
parameterization through the radiation (w_{eff}=1/3), matter (w_{eff}=0) and
deSitter (w_{eff}=-1) eras. The cosmological dynamical system which is
constrained to obey the LCDM cosmic history presents five critical points in
each era, one of which corresponding to the standard General Relativity (GR).
In the cases that differ from GR, the reconstructed coupling and potential are
of the form F(\Phi)\sim \Phi^2 and U(\Phi)\sim F(\Phi)^m where m is a constant.
This class of scalar tensor theories is also theoretically motivated by a
completely independent approach: imposing maximal Noether symmetry on the
scalar-tensor Lagrangian. This approach provides independently: i) the form of
the coupling and the potential as F(\Phi)\sim \Phi^2 and U(\Phi)\sim F(\Phi)^m,
ii) a conserved charge related to the potential and the coupling and iii)
allows the derivation of exact solutions by first integrals of motion.Comment: Added comments, discussion, references. 15 revtex pages, 5 fugure
- …