67 research outputs found

    The Strength of the Flow of Japanese Words into Chinese: \u27ke neng\u27 (可能 ka nou) as a Case in Point

    Get PDF
    The epistemic adverb \u27ke neng (ka nou in Japanese, 可能 in chracters)\u27 in Chinese is not a native word, but a loan word from Japanese during Meiji preriod when Japanses translated western documents using Chinese characters to express the meaning of \u27virtual, possibility\u27. This case shows the depth of Japanese words\u27 influence on Chinese language in the carly 20th century.文部科学省グローバルCOEプログラム 関西大学文化交渉学教育研究拠点東アジアの言語と表

    Ku80 cooperates with CBP to promote COX-2 expression and tumor growth.

    Get PDF
    Cyclooxygenase-2 (COX-2) plays an important role in lung cancer development and progression. Using streptavidin-agarose pulldown and proteomics assay, we identified and validated Ku80, a dimer of Ku participating in the repair of broken DNA double strands, as a new binding protein of the COX-2 gene promoter. Overexpression of Ku80 up-regulated COX-2 promoter activation and COX-2 expression in lung cancer cells. Silencing of Ku80 by siRNA down-regulated COX-2 expression and inhibited tumor cell growth in vitro and in a xenograft mouse model. Ku80 knockdown suppressed phosphorylation of ERK, resulting in an inactivation of the MAPK pathway. Moreover, CBP, a transcription co-activator, interacted with and acetylated Ku80 to co-regulate the activation of COX-2 promoter. Overexpression of CBP increased Ku80 acetylation, thereby promoting COX-2 expression and cell growth. Suppression of CBP by a CBP-specific inhibitor or siRNA inhibited COX-2 expression as well as tumor cell growth. Tissue microarray immunohistochemical analysis of lung adenocarcinomas revealed a strong positive correlation between levels of Ku80 and COX-2 and clinicopathologic variables. Overexpression of Ku80 was associated with poor prognosis in patients with lung cancers. We conclude that Ku80 promotes COX-2 expression and tumor growth and is a potential therapeutic target in lung cancer

    Radiated tumor cell-derived microparticles effectively kill stem-like tumor cells by increasing reactive oxygen species

    Get PDF
    Stem-like tumor cells (SLTCs) are thought to be the cellular entity responsible for clinical recurrence and subsequent metastasis. Inhibiting or killing SLTCs can effectively reduce recurrence and metastasis, yet little has been done to clear SLTCs because they are usually resistant to chemotherapy, radiotherapy, and even immunotherapy. In this study, we established SLTCs by low-serum culture and confirmed that the low-serum-cultured tumor cells were in a quiescent state and resistant to chemotherapy, showing features of SLTCs, consistent with the reported data. We demonstrated that SLTCs had high levels of reactive oxygen species (ROS). Based on the finding that radiated tumor cell-derived microparticles (RT-MPs) contained ROS, we used RT-MPs to kill SLTCs. We found that RT-MPs could further increase ROS levels and kill SLTCs in vivo and in vitro partially by ROS carried by the RT-MPs themselves, providing a new method for eliminating SLTCs

    Efficacy and safety of triazavirin therapy for coronavirus disease 2019 : A pilot randomized controlled trial

    Get PDF
    Acknowledgements: We are deeply grateful to the front-line clinicians who participated in the study while directly fighting the epidemic. This study was supported by the Chinese Academy of Engineering Projects for COVID-19 (2020-KYGG-01-04) and Heilongjiang Province Urgent Project-6 for COVID-19. Data and safety monitoring board members of this trial included Kang Li, Yong Zhang, Songjiang Liu, and Yaohui Shi.Peer reviewedPublisher PD

    Zinc finger and SCAN domain containing 1, ZSCAN1, is a novel stemness-related tumor suppressor and transcriptional repressor in breast cancer targeting TAZ

    Get PDF
    IntroductionCancer stem cells (CSCs) targeted therapy holds the potential for improving cancer management; identification of stemness-related genes in CSCs is necessary for its development.MethodsThe Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) datasets were used for survival analysis. ZSCAN1 correlated genes was identified by Spearman correlation analysis. Breast cancer stem-like cells (BCSLCs) were isolated by sorting CD44+CD24- cells from suspension cultured breast cancer (BC) spheroids. The sphere-forming capacity and sphere- and tumor-initiating capacities were determined by sphere formation and limiting dilution assays. The relative gene expression was determined by qRT-PCR, western blot. Lentivirus system was used for gene manipulation. Nuclear run-on assay was employed to examine the levels of nascent mRNAs. DNA pull-down and Chromatin immunoprecipitation (ChIP) assays were used for determining the interaction between protein and target DNA fragments. Luciferase reporter assay was used for evaluating the activity of the promoter.Results and discussionZSCAN1 is aberrantly suppressed in BC, and this suppression indicates a bad prognosis. Ectopic expression of ZSCAN1 inhibited the proliferation, clonogenicity, and tumorigenicity of BC cells. ZSCAN1-overexpressing BCSLCs exhibited weakened stemness properties. Normal human mammary epithelial (HMLE) cells with ZSCAN1 depletion exhibited enhanced stemness properties. Mechanistic studies showed that ZSCAN1 directly binds to -951 ~ -925bp region of WWTR1 (encodes TAZ) promoter, inhibits WWTR1 transcription, thereby inhibiting the stemness of BCSCs. Our work thus revealed ZSCAN1 as a novel stemness-related tumor suppressor and transcriptional repressor in BC

    The Strength of the Flow of Japanese Words into Chinese: 'ke neng' (可能 ka nou) as a Case in Point

    No full text

    Multi-Objective Optimization Design of Micro-Texture Parameters of Tool for Cutting GH4169 during Spray Cooling

    No full text
    This study explores the performance of micro-textured tools when cutting GH4169 during spray cooling. First, the morphologies of the micro-textures were selected according to the simulation and experiments. Secondly, cutting experiments were carried out during spray cooling. As appropriate for each experiment, regression models of cutting force, cutting temperature, or tool wear area were established, and variance analysis was conducted. The cutting force, cutting temperature, and tool wear area functions were obtained from the respective regression models. Based on these functions, the micro-texture parameters were optimized using the response surface method with the cutting force, cutting temperature, and rake face wear area as the objectives. Finally, a full factor experiment on the micro-texture parameters was designed using Minitab, and cutting experiments were conducted using micro-textured tools with these parameters. Taking a relatively low cutting force, cutting temperature, and tool wear as the objectives, a genetic algorithm multi-objective optimization model for the micro-texture parameters of the tools was established, and the model was solved using the NSGA-II algorithm to obtain a Pareto solution set and micro-texture parameters with a good, comprehensive cutting performance. The micro-texture morphology and parameters obtained in this study can also be used for cutting other high-temperature alloy materials with similar properties to GH4169. This research method can also be used to optimize micro-textured tools for cutting other materials

    Out-of-Plane Bending and Shear Behaviors of Steel Plate-Concrete Walls for Nuclear Power Plants

    No full text
    The steel plate-concrete structure, with its advantages of modular construction, good seismic capacity, and strong impact resistance, has been gradually replacing the reinforced concrete structure in the containment vessel and internal workshop structure of nuclear power plants in recent years. In this study, the out-of-plane single-point loading test and parametric finite element simulation analysis were conducted on five steel plate-concrete wall slab specimens with different stud spacings, shear span ratios, and steel contents. Results showed that the steel plate-concrete wall slab under the out-of-plane load had the same failure mode as that of an ordinary reinforced concrete wall. The out-of-plane shear capacity of the steel plate-concrete wall slab increased significantly in the case of numerous studs. With the increase in shear span ratio, steel plate-concrete members suffered a bending failure. When the steel content was low, they had diagonal tension failure, such as a rare-reinforced concrete wall. The out-of-plane bending and shear mechanism of the steel plate-concrete shear wall was studied theoretically, and the calculation formulas of the bending and shearing capacities were derived
    corecore