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Stem-like tumor cells (SLTCs) are thought to be the cellular entity responsible for
clinical recurrence and subsequent metastasis. Inhibiting or killing SLTCs can
effectively reduce recurrence and metastasis, yet little has been done to clear
SLTCs because they are usually resistant to chemotherapy, radiotherapy, and even
immunotherapy. In this study, we established SLTCs by low-serum culture and
confirmed that the low-serum-cultured tumor cells were in a quiescent state and
resistant to chemotherapy, showing features of SLTCs, consistent with the reported
data. We demonstrated that SLTCs had high levels of reactive oxygen species (ROS).
Based on the finding that radiated tumor cell-derived microparticles (RT-MPs)
contained ROS, we used RT-MPs to kill SLTCs. We found that RT-MPs could
further increase ROS levels and kill SLTCs in vivo and in vitro partially by ROS
carried by the RT-MPs themselves, providing a new method for eliminating SLTCs.
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1 Introduction

Recurrence and metastasis pose significant challenges to tumor treatment. Both
recurrence and metastasis can be caused by residual tumor cells that remain in the body
after initial treatment, whichmay enter into a dormant state and are resistant to conventional
therapies such as chemotherapy and radiotherapy (Saleh et al., 2019; Summers et al., 2020).
Notably, the development of donor-derived metastasis was found in patients who have
received organ transplantation from individuals who had been cured of melanoma or
glioblastoma, suggesting that some latent tumor cells can escape immune surveillance and
grow in an immunosuppressed environment, leading to the development of metastatic
disease (MacKie et al., 2003; Xiao et al., 2013). It is thought that dormant tumor cells, also
known as stem-like tumor cells (SLTCs), are the cellular entity responsible for clinical
recurrence and subsequent metastasis. SLTCs are present in primary tumors as a rare
subpopulation and their percentage correlates with metastatic potential (Lawson et al., 2015;
Zhang et al., 2017). SLTCs have considerable tumor-initiating capacity, and can proliferate
and differentiate to produce advanced metastatic disease (Lawson et al., 2015; Nallasamy
et al., 2022). However, their nature and how to effectively kill or inhibit them remain largely
unknown.
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Cellular dormancy is regulated by various signals derived from
endothelial cells and immune cells (Widner et al., 2018; Endo and
Inoue, 2019). TGF-β and IFN-β have recently been identified as
important inducers of cell dormancy (Lan et al., 2019; Miao et al.,
2019). Joan and his group isolated dormant cancer cells from early-
stage human lung and breast carcinoma cells (Malladi et al., 2016).
They found that dormant cells showed stem cell-like characteristics
and expressed SOX2 and SOX9 transcription factors. They
demonstrated that mitogen-low media (MLM, 2% serum) could
effectively support the recapitulation of critical features of slow-
cycling, long-lived SLTCs.

Oxidative stress exerted by reactive oxygen species (ROS) is
generally detrimental to cells, and the redox status of tumor cells
usually differs from that of normal cells (Hayes et al., 2020). Due to
their high metabolic rate and activation of oncogenic pathways,
tumor cells exhibit elevated ROS levels (Gorrini et al., 2013; Kudo
et al., 2020). This makes them more susceptible to the harmful
effects of ROS and provides a therapeutic opportunity for cancer
treatment. ROS are also involved in the renewal and differentiation
of normal stem cell (Khacho et al., 2016). Although SLTCs share
similar phenotypes with normal stem cells, relatively little is known
about their redox status.

Extracellular vesicles have emerged as major mediators for
intercellular communication and represent a heterogeneous group of
cell-derived membranous spherical structures, comprising apoptotic
bodies, microparticles (MPs) and exosomes (vanNiel et al., 2018;Marar
et al., 2021). In our previous studies, we found that radiated tumor cell-
released microparticles (RT-MPs) could effectively kill tumor cells and
mediated the radiation-induced bystander effect. Both in vitro and in
vivo, RT-MPs exhibited broad killing effects on various types of tumors,
and significantly inhibited tumor growth (Wan et al., 2020). In addition
to their direct cytotoxic effects, RT-MPs also reprogrammed tumor-
associated macrophages to the M1-like proinflammatory phenotype,
while the hypoxia and Ultraviolet radiation-treated tumor cell-derived
MPs have been reported to polarize M2 phenotype for tumor
progression (Ma et al., 2016; Chen et al., 2020; Wan et al., 2020;
Zhai et al., 2022). Since SLTCs are resistant to traditional chemotherapy,
finding a way to kill these quiescent tumor cells is crucial for the
inhibition of tumor recurrence and metastasis (Recasens and Munoz,
2019; Talukdar et al., 2019). In this study, we confirmed that low
mitogen and serum culture in vitro could promote tumor cells in a
quiescent state and resistance to chemotherapy, showing features of
SLTCs, and SLTCs had high levels of ROS. RT-MPs could also
effectively kill SLTCs by further increasing ROS levels.

2 Materials and methods

Chemical reagents. L-glutathione (G4251) was purchased from
Sigma-Aldrich (Darmstadt, Germany). H2DCFDA (D399) was
bought from Invitrogen (Massachusetts, The United States).

2.1 Cell lines and cell culture

Cell lines, including the human lung carcinoma cell lines
A549 and murine Lewis, were bought from the American Tissue
Culture Collection (ATCC). Luciferase-stably-transfected cell lines

(LLC-LUC) were established for in vivo studies. Cells were cultured
in complete medium (supplemented with 10% fetal bovine serum
(FBS), 100 U/mL penicillin, and 100 U/mL streptomycin) at 37°C
with 5% CO2, and SLTCs were cultured using 2% serum medium.
Mycoplasma infection was detected routinely and confirmed to be
negative.

2.2 Isolation of RT-MPs

5 × 106 tumor cells, plated into 10-cm cell culture dishes, were
irradiated with a single dose of 20 Gy by 6 MVX-rays (600MU/min;
Trilogy® System Linear Accelerator, Varian Medical Systems),
followed by a replacement of 20 mL complete medium. And 72 h
later, the collectedmediumwas centrifuged at 1 000 g for 10 min and
then 14,000 g for 2 min at 4°C in order to remove tumor cells and
debris. After that, the supernatant was centrifuged at 14,000 g for 1 h
for the isolation of RT-MPs. The precipitate was washed twice with
sterile 1× phosphate buffer saline (PBS) and resuspended in sterile
1 × PBS for in vivo experiments or resuspended in complete medium
or 2% serum medium for cell experiments.

2.3 Transmission electron microscopy

In order to observe their size and morphology, RT-MPs were
stained with 2% phosphotungstic acid solution for 5 min and then
placed on a copper mesh for TEM imaging (HT7700-SS/FEI Tecnai
G20 TWIN, Massachusetts, The United States).

2.4 Cell viability study

In order to measure cell viability, 5 × 103 tumor cells per well,
seeded into 96-well plates (NEST, Wuxi, China), were treated with
different doses of RT-MPs or DDP for 48 h. After that, cell viability
was detected by a CCK-8 assay kit (BS350B, Biosharp, Hefei, China).

2.5 Colony formation assay

For the purpose of testing the inhibitory ability of RT-MPs
towards tumor cells in vitro, tumor cells, plated in 48-well plates
(NEST; 1 × 104 cells per well), were treated with various
concentrations of RT-MPs for 3 days. After that, the cells were
fixed with 4% formaldehyde for 30 min, stained with 2% crystal
violet (#HT90132, Sigma-Aldrich) for 12 h, and washed with water
for three times. The stained cells were finally photographed.

2.6 Analysis of ROS production

Tumor cells, plated in 12-well dishes (NEST; 5 × 104 cells per
well), were treated with RT-MPs for 4, 12, and 24 h. Subsequently,
the cells were stained with H2DCFDA (10 μM) in 1 mL medium
without FBS for 30 min at 37°C. After 3 times washes with 1× PBS,
the cells were collected, resuspended in 150 μL 1× PBS and detected
by flow cytometry (Beckman CytoFLEXS, California, The
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FIGURE 1
Low-serum culture induces tumor cell quiescence. (A) Representative images of EdU staining for A549 cells cultured in 10% serum or 2% serum for
72 h. Scale bar, 20 ?m. (B) Representative images of EdU staining for Lewis cells cultured in 10% serum or 2% serum for 72 h. Scale bar, 20 ?m. (C,D)CFSE
assay of A549 cells and Lewis cells cultured in 10% serum or 2% serum culture for 72 h detected by flow cytometry. (E,F) A549 cells and Lewis cells were
treated with different concentrations of DDP for 48 h, and cell viability was estimated by CCK-8 assays. (G) Treatment schedule of DDP for the mice
with subcutaneous inoculation of LLC-LUC cells cultured in 10% serumor 2% serum. (H) Tumor volumemeasured in 15th day in tumor-bearingmice after
DDP treatments (n = 8).
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United States). A minimum of 10,000 cells were acquired from each
sample for analysis.

2.7 EdU proliferation Assay

A549 and Lewis cells were seeded in 96-well plates, in which
5×103 cells per well were cultured with normal medium and 1×104

cells per well were cultured with 2% serum medium for 72 h,
respectively. Cell proliferation was determined with the EdU
Apollo in Vitro Imaging Kit (RIBOBIO, Guangzhou, China)
according to the manufacturer’s protocol.

2.8 CFSE proliferation Assay

A549 and Lewis cells were stained with 10 µM CFSE for 10 min
and then seeded in 12-well plates (NEST; 1×105 cells per well) with
normal medium or 2% serum medium, respectively. After 72 h, the
cells were harvested and detected by flow cytometry.

2.9 In vitro cellular uptake assay

To detect the uptake of RT-MPs, A549 and Lewis, stem-like
A549, and stem-like Lewis cells were seeded in a glass-bottom cell
culture dish (NEST; 1 × 105 cells per well) and incubated with PKH-
26-labelled RT-MPs for 2 h and 4 h. After that, the cells were washed
3 times with 1× PBS and then stained with 10 μM CFSE for 10 min.
Subsequently, they were washed 3 times with 1× PBS, fixed with 4%
paraformaldehyde for 30 min, and washed again with PBS. The cells
were imaged through confocal laser scanning microscopy (A1R/A1,
Nikon, Tokyo, Japan). In order to quantify cellular uptake, the cells,
seeded in 6-well cell culture dishes (NEST; 1 × 106 cells per well),
were treated as described above, washed with 1× PBS for 3 times,
collected, and resuspended in 1× PBS (150 μL) for flow cytometry
analysis.

2.10 RT-qPCR

Total RNA of tumor cells was isolated by the Total RNA Kit
IR6834 (Omega Bio-Tek, Georgia, The United States) and measured
through NanoDrop ND-1000 (Thermo Fisher Scientific,
Massachusetts, The United States). Subsequently, the purified
RNA was reverse transcribed into cDNA with HiScript III RT
SuperMix (+ gDNA wiper) (#R323, Vazyme, Nanjing, China).
Then, RT-qPCR was performed in Step One system with AceQ®
universal SYBR qPCR Master Mix (Vazyme). The gene expressions
were calculated and normalized to the GAPDH gene. All of the
primers were synthesized by Sangon Biotech (Shanghai, China)
Co., Ltd.

2.11 Western blot

Cells were lysed by RIPA buffer and centrifuged (12,000 g ×
30 min) to collect total protein in the supernatant, which were mixed

with 5× SDS loading buffer (P0015, Beyotime, Shanghai, China) and
heated to 100°C (10 min) for denaturation. After SDS-PAGE and
transfer to the polyvinylidene difluoride (PVDF) membrane, the
membranes were blocked by 5% skim milk solution and incubated
with the corresponding primary antibodies at 4°C for a night. After
three times wash, the membranes were incubated with secondary
antibody and then washed for another three times, followed by
chemiluminescent exposure of the blot with NcmECL Ultra
(P10100, NCM Biotech, Suzhou, China). The primary antibodies
were as follows: Anti-CD44 antibodies (15675-1-AP, Proteintech,
Chicago, The United States), Anti-CD133 antibodies (18470-1-AP,
Proteintech), Anti-SOX2 antibodies (#3579, Cell Signaling
Technology, Massachusetts, The United States), Anti-C-MYC
antibodies (#5605, Cell Signaling Technology), Anti-GAPDH
antibodies (GB11002, Servicebio, Wuhan, China).

2.12 RNA sequencing

The total RNA was extracted from Lewis cells, Lewis cells
cultured in 2% serum medium, and RT-MP-treated stem-like
Lewis cells. RNA sequencing was performed by Wuhan Bioacme
Biological Technology Co., Ltd.

2.13 Animal experiments

Male C57BL/6 J mice were bought from Liaoning
Changsheng Biotechnology Co., Ltd. and maintained in the
specific pathogen-free barrier facility in the Animal Center. To
establish subcutaneous tumor bearing model, LLC-LUC cells
cultured in 2% or 10% serum (1 × 106 cells suspended in
100 μL PBS) were subcutaneously injected into the right flank
of mice and administered intrapleural injections of 5 mg/kg DDP
three times every 2 days. Tumor volumes were measured at the
15th day according to the formula V = (L × W2)/2. In order to
establish MPE model, mice were anaesthetized by 1%
pentobarbital sodium. LLC-LUC cells (3 × 105 cells suspended
in 50 μL PBS) were injected into the right pleural cavity through
the tenth or eleventh intercostal space at the midaxillary line.
Four days later, all mice were observed by bioluminescence
imaging to ensure that the MPE models were successfully and
uniformly established. After that, the mice were randomized to
3 groups (control, RT-MPs, and RT-MPs + GSH) and
intrapleurally injected with 50 μL liquid (PBS, RT-MPs or
GSH-incubated RT-MPs) under isoflurane anaesthesia 4 times
every 2 days. In order to evaluate MPE conditions, 2 mice in each
group were imaged on day 20 through the Bruker In Vivo MS FX
PRO Imager (Karlsruhe, Germany). The survival time of the
remaining mice were observed.

2.14 Bioluminescence imaging

In order to evaluate MPE conditions, 2 mice in each group were
anaesthetized with 1% pentobarbital sodium and injected
intraperitoneally with 150 mg/kg firefly luciferin (CAS: 103404-
75-7, Thermo Life, Massachusetts, The United States). And
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10 min later, they were imaged with the Bruker In VivoMS FX PRO
Imager to acquire luminescent images (3-min exposure time) and
X-ray photographs (30-s exposure time).

2.15 Quantification and statistical analysis

The statistical analysis was performed with Prism software
(GraphPad Prism 9.0 software). Mine survival curves were
analysed with the log-rank (Mantel-Cox) test. Statistical
significance was analysed using the unpaired two-tailed Student’s
t-test or two-way ANOVA. Data are presented as the mean ± SEM.
Significant differences are indicated by *p < 0.05, **p < 0.01, ***p <
0.001, and NS: not significant.

3 Results

3.1 Low-serum culture promotes a
quiescent state of tumor cells

To verify the proliferation ability after 72 h of low-serum (2%)
culture, we labelled A549 cells and Lewis cells with 5-ethynyl-20-
deoxyuridine (EdU). As shown in Figures 1A, B, tumor cells cultured
in low-serummedium showed significantly fewer EdU-positive cells.
Staining for the proliferation marker Ki-67 provided the same
results (Supplementary Figures S1A, B). We performed flow
cytometry to detect carboxyfluorescein succinimidyl ester (CFSE),
which decreased in fluorescence intensity as the cells divided, and
discovered a higher mean value of CFSE in the low-serum-cultured
A549 cells and Lewis cells (Figures 1C, D). These results indicated
that A549 cells and Lewis cells underwent a rapid decrease in
proliferation and entered a quiescence state under low-serum
conditions. SLTCs were resistant to chemotherapy, and we
examined the sensitivity of tumor cells cultured in low-serum
medium to cisplatin (DDP) by using CCK-8 to test cell viability.
As shown in Figures 1E, F, low-serum (2%)-cultured A549 cells and
Lewis cells were more resistant to DDP. And we also proved this
resistant effect of low-serum (2%)-cultured LLC-LUC cells in vivo
(Figures 1G, H).

3.2 Low-serum culture induces high
expression of stem cell-related genes

To understand the changes after low serum culturing at the
transcriptional level, we performed RNA sequencing (RNA-seq)
transcriptomic profiling under normal and low-serum conditions.
Cell adhesion, response to external stimulus, cell differentiation, and
cell migration were enriched in different databases. Low-serum
culture induced the enrichment of stemness-related pathways,
such as p53 signaling pathway and mesenchymal cell
diffrentiation pathway (Pastushenko and Blanpain, 2019; Boutelle
and Attardi, 2021) (Figure 2A). Lewis cells cultured in low serum
had higher expression levels of stem cell-related genes, such as
Notch1, Klf4, and Wnt6 (Figures 2B, C). We also performed RT-
qPCR and western blot to analyse other stem-related markers, such
as BMI-1, CD44, NANOG, SOX2, and OCT4 (Shi and Jin, 2010; Jia

et al., 2019; Zhang et al., 2019). As shown in Figures 2D–G, 2%
serum culture resulted in higher mRNA and protein levels of stem
cell-related genes. In summary, 2% serum culture-induced A549 and
Lewis cells showed vital features of SLTCs, including a propensity to
enter proliferative quiescence and higher expression levels of stem
cell-related genes.

3.3 RT-MPs effectively kill SLTCs

Our group has reported that RT-MPs can induce radiation-
induced bystander effects and cause tumor cell ferroptosis. Based on
the finding that SLTCs are exposed to higher load of ROS and
oxidative stress, we explored whether SLTCs are susceptible to RT-
MPs, which can function by increasing the ROS level (Wang et al.,
2018). We separated RT-MPs as previously reported and
characterized them on the basis of morphology, size, and protein
content. Transmission electron microscopy imaging showed that
RT-MPs had a spherical morphology (Figure 3A). Nanoparticle
tracking analysis revealed that untreated A549-and Lewis-derived
RT-MPs had mean diameters of 383 nm and 376 nm and radiated
A549-and Lewis-derived RT-MPs had mean diameters of 455 nm
and 408 nm, respectively (Figure 3B). Western blot analysis revealed
the presence of extracellular vesicle-associated proteins that are
commonly used as extracellular vesicle markers, such as CD63,
CD9 and tumor susceptibility gene 101 protein (TSG101)
(Figure 3C).

We also investigated the uptake ability of SLTCs for RT-MPs by
flow cytometry. Compared with untreated tumor cell-derived
microparticles, stem-like A549 and Lewis cells internalized more
RT-MPs (Figure 3D). We then explored the killing effect of RT-MPs
toward SLTCs by using a CCK-8 kit assay and the colony formation
assay. As shown in Figures 3E–H, RT-MPs could effectively kill both
normal-serum-cultured and low-serum-cultured A549 and Lewis
cells, and there was no significant difference in the killing effect
under the two conditions.

3.4 SLTCs internalize fewer RT-MPs

To explore the underlying mechanism by which RT-MPs kill
SLTCs, we first examined the number of RT-MPs taken up by
tumor cells under normal- and low-serum conditions by flow
cytometry and confocal imaging. We labelled RT-MPs with PKH-
26, added them to cells under two different conditions, and
collected them after two and 4 hours. As shown in Figures 4A,
B, SLTCs captured much fewer RT-MPs than standard-serum-
cultured A549 or Lewis cells. It was clear that fewer red signals
merged with the green signals in the low-serum culture group,
indicating that fewer RT-MPs were internalized by the SLTCs
(Figures 4C, D).

3.5 RT-MPs kill SLTCs by further increasing
ROS levels

It has been reported that SLTCs have high ROS levels. We
verified that low-serum-cultured A549 and Lewis cells had
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FIGURE 2
Tumor cells cultured in low serum have high expression levels of stem cell-related genes. (A) Bubble map of differentially enriched pathways. (B)
Volcano plot showing the upregulated, downregulated or insignificantly differentially expressed genes in Lewis cells cultured in 10% or 2% serummedium
for 72 h. (C)Heatmap of differentially expressed stem cell-related genes in Lewis cells cultured in 10% or 2% serummedium for 72 h (D) RT-qPCR and (E)
western blot analysis of the expression levels of stem cell-related in A549 cells cultured in 10% or 2% serum medium. (F) RT-qPCR and (G) western
blot analysis of the expression levels of stem cell-related in Lewis cells cultured in 10% or 2% serum medium.
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FIGURE 3
RT-MPs effectively kill SLTCs. (A) TEM images of RT-MPs. Scale bar, 200 nm. (B) Representative size and particle distribution plots of untreated
A549 or Lewis-derived MPs and radiated A549 or Lewis-derived MPs. (C) Western blots of CD9 and TSG101 expression in untreated A549 or Lewis-
derivedMPs and irradiated A549 or Lewis-derivedMPs. (D) Flow cytometric analysis of untreated A549 or Lewis-derivedMPs and radiated A549 or Lewis-
derived MP internalization by stem-like A549 and Lewis cells at multiple time points. (E,F) A549 and Lewis cells cultured in 10% or 2% serummedium
were treated with different concentrations of RT-MPs for 48 h, and cell viability was estimated by CCK-8 assays. (G,H) Representative images of
A549 cells and Lewis cells in the presence of different concentrations of RT-MPs (0.4 and 0.8 mg/mL) for 48 h.
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significantly higher ROS levels (Figures 5A, B). RT-MPs further
increased ROS levels under low-serum conditions (Figures 5C,
D). Our group has discovered that RT-MPs contain ROS. To
determine whether RT-MPs killed SLTCs through ROS, we
incubated L-glutathione (GSH) with RT-MPs for 12 h
following by washing three times with PBS, which
significantly decreased the ROS levels in RT-MPs
(Supplementary Figures S2A, B). GSH-incubated RT-MPs
maintained a similar mean diameter of spherical structure
with RT-MPs (Supplementary Figures S3A, B). The cell
viability test showed that GSH-incubated RT-MPs could
partially rescue the death caused by RT-MPs in stem-like
A549 and Lewis cells (Figures 5E, F and Supplementary
Figure S2C). To further elucidate the mechanism underlying
the RT-MPs killing effect on SLTCs, we performed RNA-seq on
stem-like Lewis cells and RT-MP-treated stem-like Lewis cells (Figures
5G, H). RT-MPs significantly upregulated the expression of ferroptosis-
related gene Slc11a2 and DNA damage-related gene Zbtb11 in SLTCs
(Seoane et al., 2002; Chen et al., 2021), which may provide insight into
the further mechanisms underlying the cytotoxic effects of RT-MPs on
SLTCs.

3.6 In vivo killing effect of RT-MPs on SLTCs

We next investigated the killing effect of RT-MPs on SLTCs
in vivo. We established a malignant pleural effusion (MPE)
mouse model using Lewis cells stably transfected with red
fluorescent protein (Lewis-RFP) and administered intrapleural
injections of 3 mg/kg DDP and 0.1 mg/kg RT-MPs three times
every 2 days. Three days after treatment was completed, cells
were collected from the pleural lavage of MPE mice. We analysed
the expression of the cancer stem cell marker CD44 in Lewis-RFP
tumor cells (Figures 6A, B). The flow cytometry results showed
that RT-MPs significantly decreased the percentage of CD44-
positive tumor cells, while DDP did not (Figure 6C). We also
measured Ki67 expression in pleural tumor cells in the three
groups. As shown in Figures 6D, E, Ki67-positive cells decreased
in mice treated with RT-MPs but not in mice treated with DDP.
We further investigated the therapeutic effect of RT-MPs and the
effect of GSH-incubated RT-MPs. As shown in Figures 6F, G, we
observed increased survival upon treatment with RT-MPs, which
was superior to that of the control and GSH-incubated RT-MPs
treatments. GSH-incubated RT-MPs also prolonged the survival

FIGURE 4
SLTCs internalize fewer RT-MPs. (A,B) Flow cytometric analysis of RT-MPs internalization by normal or stem-like A549 cells and normal or stem-like
Lewis cells at multiple time points. (C,D) Representative images of tumor cells (green) phagocytosing red RT-MPs over time. A549 and Lewis cells were
stained with CFSE, and RT-MPs were stained with the red fluorescent dye PKH26. Scale bar, 50 µm.
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FIGURE 5
RT-MPs kill SLTCs by further increasing ROS levels. (A,B) Cytosolic ROS were assessed by flow cytometry using H2DCFDA. (C,D) ROS levels were
assessed by flow cytometry in RT-MPs-treated stem-like A549 and Lewis cells. (E,F) Results of the CCK-8 assay for stem-like A549 and Lewis cells treated
with RT-MPs and GSH-incubated RT-MPs. (G) Volcano plot showing significantly or insignificantly differentially expressed genes in stem-like Lewis cells
untreated or treated with RT-MPs for 48 h. (H)Heat map of differentially expressed genes in stem-like Lewis cells untreated or treated with RT-MPs
for 48 h.
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FIGURE 6
In vivo killing effect of RT-MPs on SLTCs. (A) Experimental outline for animal experiment. (B) Representative flow cytometry peak diagram of
CD44 expression in tumor cells in MPE mice. (C)Quantification of expression levels. (D) Representative images of Ki67 immunofluorescence staining in
pleural tumor nodules in the different groups. Scale bar, 100 µm. (E) Quantification of the proportion of Ki67-positive cells. (F) Experimental outline for
animal experiment. (G) Kaplan-Meier survival plot of MPE mice in the corresponding treatment groups (n = 13–15 per group). (H) Representative in
vivo bioluminescence images of the growth of mouse MPE under different treatment conditions.
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of MPE mice compared with the PBS group. In vivo imaging
showed the tumor burden on day four and day 20 after
inoculation with LLC-LUC cells, which was consistent with
the survival curve (Figure 6H).

4 Discussion

Metastasis and recurrence are the main challenges in
modern tumor treatment, and they arise from residual
disseminated tumor cells that evade therapies and enter a
dormant state (Miao et al., 2019; Pantel and Alix-Panabieres,
2019; Senft and Jeremias, 2019; Hen and Barkan, 2020).
Understanding the mechanisms by which tumor enter a
dormant state and finding ways to inhibit or kill SLTCs are
very important to prevent metastasis and recurrence. Therapies
targeting proliferating tumor cells have gained success.
However, preclinical studies have shown that “awakening”
dormant cells and then killing them with antiproliferation
drugs rapidly fuel tumor recurrence (Essers and Trumpp,
2010; Bragado et al., 2013). The residual SLTCs are
genetically heterogeneous, and awakening them would
expand genetics and probably epigenetics and cause therapy
resistance (Schmidt-Kittler et al., 2003; Stoecklein et al., 2008).
Killing SLTCs in the dormant state would be a novel strategy to
inhibit metastasis and recurrence.

RT-MPs are extravesicles that secreted by radiated tumor
cells. Various treatments, including radiotherapy, chemotherapy,
hypoxia, and ultraviolet radiation, can stimulate the release of
microparticles (MPs) from tumor cells (Zhang et al., 2018; Chen
et al., 2020). While most previously reported tumor-derived MPs
have shown a prometastatic potential, our study suggests that
RT-MPs exhibit unique antitumor effects. In our previous study,
we demonstrated that RT-MPs killed tumor cells by ferroptosis
and regulated the suppressive immune environment, but the
specific killing mechanism is unknown. In this study, we
found that RT-MPs could effectively kill SLTCs and that ROS
played a significant role in this process. Other possible
mechanisms require further exploration. SLTCs were found to
have higher ROS levels and the induction of further accumulation
of ROS may lead to the preferential killing of SLTCs. Determining
ways to further increase ROS in SLTCs is a strategy for clearing
SLTCs.

Local treatment with RT-MPs has been explored and has been
shown to be very safe in thoracic injection, but this kind of injection
still limits its clinical application. We further found that intravenous
injection of RT-MPs was safe in a mouse model, but strategies to
target and kill tumors after intravenous injection are being examined
in further research.
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