46,195 research outputs found

    Importance of tetrahedral coordination for high-valent transition metal oxides: YCrO4_4 as a model system

    Full text link
    We have investigated the electronic structure of the high oxidation state material YCrO4_4 within the framework of the Zaanen-Sawatzky-Allen phase diagram. While Cr4+^{4+}-based compounds like SrCrO3_3/CaCrO3_3 and CrO2_2 can be classified as small-gap or metallic negative-charge-transfer systems, we find using photoelectron spectroscopy that YCrO4_4 is a robust insulator despite the fact that its Cr ions have an even higher formal valence state of 5+. We reveal using band structure calculations that the tetrahedral coordination of the Cr5+^{5+} ions in YCrO4_4 plays a decisive role, namely to diminish the bonding of the Cr 3d3d states with the top of the O 2p2p valence band. This finding not only explains why the charge-transfer energy remains effectively positive and the material stable, but also opens up a new route to create doped carriers with symmetries different from those of other transition-metal ions.Comment: 6 pages, 6 figure

    Accumulation of three-body resonances above two-body thresholds

    Get PDF
    We calculate resonances in three-body systems with attractive Coulomb potentials by solving the homogeneous Faddeev-Merkuriev integral equations for complex energies. The equations are solved by using the Coulomb-Sturmian separable expansion approach. This approach provides an exact treatment of the threshold behavior of the three-body Coulombic systems. We considered the negative positronium ion and, besides locating all the previously know SS-wave resonances, we found a whole bunch of new resonances accumulated just slightly above the two-body thresholds. The way they accumulate indicates that probably there are infinitely many resonances just above the two-body thresholds, and this might be a general property of three-body systems with attractive Coulomb potentials.Comment: 4 pages, 3 figure

    Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-layer- induced Octahedral Distortion

    Get PDF
    With reduced dimensionality, it is often easier to modify the properties of ultra-thin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultra-thin perovskite SrRuO3 films by the deposition of a SrTiO3 capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show increase in the Curie temperature of SrRuO3 due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.Comment: Main-text 5 pages, SI 6 pages. To appear in Physical Review Letter

    Ground State Degeneracy in the Levin-Wen Model for Topological Phases

    Full text link
    We study properties of topological phases by calculating the ground state degeneracy (GSD) of the 2d Levin-Wen (LW) model. Here it is explicitly shown that the GSD depends only on the spatial topology of the system. Then we show that the ground state on a sphere is always non-degenerate. Moreover, we study an example associated with a quantum group, and show that the GSD on a torus agrees with that of the doubled Chern-Simons theory, consistent with the conjectured equivalence between the LW model associated with a quantum group and the doubled Chern-Simons theory.Comment: 8 pages, 2 figures. v2: reference added; v3: two appendices adde

    Ce-L3-XAS study of the temperature dependence of the 4f occupancy in the Kondo system Ce2Rh3Al9

    Get PDF
    We have used temperature dependent x-ray absorption at the Ce-L3 edge to investigate the recently discovered Kondo compound Ce2Rh3Al9. The systematic changes of the spectral lineshape with decreasing temperature are analyzed and found to be related to a change in the 4f4f occupation number, n_f, as the system undergoes a transition into a Kondo state. The temperature dependence of nfn_f indicates a characteristic temperature of 150K, which is clearly related with the high temperature anomaly observed in the magnetic susceptibility of the same system. The further anomaly observed in the resistivity of this system at low temperature (ca. 20K) has no effect on n_f and is thus not of Kondo origin.Comment: 7 pages, three figures, submitted to PR

    The N-end rule pathway is a sensor of heme

    Get PDF
    The conjugation of arginine, by arginyl-transferase, to N-terminal aspartate, glutamate or oxidized cysteine is a part of the N-end rule pathway of protein degradation. We report that arginyl-transferase of either the mouse or the yeast Saccharomyces cerevisiae is inhibited by hemin (Fe3+-heme). Furthermore, we show that hemin inhibits arginyl-transferase through a redox mechanism that involves the formation of disulfide between the enzyme's Cys-71 and Cys-72 residues. Remarkably, hemin also induces the proteasome-dependent degradation of arginyl-transferase in vivo, thus acting as both a "stoichiometric" and "catalytic" down-regulator of the N-end rule pathway. In addition, hemin was found to interact with the yeast and mouse E3 ubiquitin ligases of the N-end rule pathway. One of substrate-binding sites of the yeast N-end rule's ubiquitin ligase UBR1 targets CUP9, a transcriptional repressor. This site of UBR1 is autoinhibited but can be allosterically activated by peptides that bear destabilizing N-terminal residues and interact with two other substrate-binding sites of UBR1. We show that hemin does not directly occlude the substrate-binding sites of UBR1 but blocks the activation of its CUP9-binding site by dipeptides. The N-end rule pathway, a known sensor of short peptides, nitric oxide, and oxygen, is now a sensor of heme as well. One function of the N-end rule pathway may be to coordinate the activities of small effectors, both reacting to and controlling the redox dynamics of heme, oxygen, nitric oxide, thiols, and other compounds, in part through conditional degradation of specific transcription factors and G protein regulators

    Catastrophic eruption of magnetic flux rope in the corona and solar wind with and without magnetic reconnection

    Full text link
    It is generally believed that the magnetic free energy accumulated in the corona serves as a main energy source for solar explosions such as coronal mass ejections (CMEs). In the framework of the flux rope catastrophe model for CMEs, the energy may be abruptly released either by an ideal magnetohydrodynamic (MHD) catastrophe, which belongs to a global magnetic topological instability of the system, or by a fast magnetic reconnection across preexisting or rapidly-developing electric current sheets. Both ways of magnetic energy release are thought to be important to CME dynamics. To disentangle their contributions, we construct a flux rope catastrophe model in the corona and solar wind and compare different cases in which we either prohibit or allow magnetic reconnection to take place across rapidly-growing current sheets during the eruption. It is demonstrated that CMEs, even fast ones, can be produced taking the ideal MHD catastrophe as the only process of magnetic energy release. Nevertheless, the eruptive speed can be significantly enhanced after magnetic reconnection sets in. In addition, a smooth transition from slow to fast eruptions is observed when increasing the strength of the background magnetic field, simply because in a stronger field there is more free magnetic energy at the catastrophic point available to be released during an eruption. This suggests that fast and slow CMEs may have an identical driving mechanism.Comment: 7 pages, 4 figures, ApJ, in press (vol. 666, Sept. 2007

    An Invariance Principle of G-Brownian Motion for the Law of the Iterated Logarithm under G-expectation

    Full text link
    The classical law of the iterated logarithm (LIL for short)as fundamental limit theorems in probability theory play an important role in the development of probability theory and its applications. Strassen (1964) extended LIL to large classes of functional random variables, it is well known as the invariance principle for LIL which provide an extremely powerful tool in probability and statistical inference. But recently many phenomena show that the linearity of probability is a limit for applications, for example in finance, statistics. As while a nonlinear expectation--- G-expectation has attracted extensive attentions of mathematicians and economists, more and more people began to study the nature of the G-expectation space. A natural question is: Can the classical invariance principle for LIL be generalized under G-expectation space? This paper gives a positive answer. We present the invariance principle of G-Brownian motion for the law of the iterated logarithm under G-expectation

    Flux-line entanglement as the mechanism of melting transition in high-temperature superconductors in a magnetic field

    Full text link
    The mechanism of the flux-line-lattice (FLL) melting in anisotropic high-T_c superconductors in Bc^{\bf B}\parallel {\bf \hat{c}} is clarified by Monte Carlo simulations of the 3D frustrated XY model. The percentage of entangled flux lines abruptly changes at the melting temperature T_m, while no sharp change can be found in the number and size distribution of vortex loops around T_m. Therefore, the origin of this melting transition is the entanglement of flux lines. Scaling behaviors of physical quantities are consistent with the above mechanism of the FLL melting. The Lindemann number is also evaluated without any phenomenological arguments.Comment: 10 pages, 5 Postscript figures, RevTeX; changed content and figures, Phys. Rev. B Rapid Commun. in pres
    corecore