2,814 research outputs found

    GRB/GW association: Long-short GRB candidates, time-lag, measuring gravitational wave velocity and testing Einstein's equivalence principle

    Full text link
    Short-duration gamma-ray bursts (SGRBs) are widely believed to be powered by the mergers of compact binaries, such as binary neutron stars or possibly neutron star-black hole binaries. Though the prospect of detecting SGRBs with gravitational wave (GW) signals by the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)/VIRGO network is promising, no known SGRB has been found within the expected advanced LIGO/VIRGO sensitivity range for binary neutron star systems. We find, however, that the two long-short GRBs (GRB 060505 and GRB 060614) may be within the horizon of advanced GW detectors. In the upcoming era of GW astronomy, the merger origin of some long-short GRBs, as favored by the macronova signature displayed in GRB 060614, can be unambiguously tested. The model-dependent time lags between the merger and the onset of the prompt emission of the GRB are estimated. The comparison of such time lags between model predictions and the real data expected in the era of the GW astronomy would be helpful in revealing the physical processes taking place at the central engine (including the launch of the relativistic outflow, the emergence of the outflow from the dense material ejected during the merger, and the radiation of gamma rays). We also show that the speed of GWs, with or without a simultaneous test of Einstein's equivalence principle, can be directly measured to an accuracy of 3×108 cm s1\sim 3\times 10^{-8}~{\rm cm~s^{-1}} or even better in the advanced LIGO/VIRGO era. The Astrophysical Journal, VolumeComment: 12 pages, 3 figures, published in The Astrophysical Journa

    Bi-collinear antiferromagnetic order in the tetragonal α\alpha-FeTe

    Full text link
    By the first-principles electronic structure calculations, we find that the ground state of PbO-type tetragonal α\alpha-FeTe is in a bi-collinear antiferromagnetic state, in which the Fe local moments (2.5μB\sim2.5\mu_B) are ordered ferromagnetically along a diagonal direction and antiferromagnetically along the other diagonal direction on the Fe square lattice. This bi-collinear order results from the interplay among the nearest, next nearest, and next next nearest neighbor superexchange interactions J1J_1, J2J_2, and J3J_3, mediated by Te 5p5p-band. In contrast, the ground state of α\alpha-FeSe is in the collinear antiferromagnetic order, similar as in LaFeAsO and BaFe2_2As2_2.Comment: 5 pages and 5 figure

    Variation of Mycobacterium tuberculosis antigen-specific IFN-γ and IL-17 responses in healthy tuberculin skin test (TST)-positive human subjects.

    Get PDF
    ObjectiveTo determine the variation of IFN-γ and IL-17 responses to M. tuberculosis antigens in healthy TST+ humans.MethodsWe isolated peripheral blood mononuclear cells from 21 TST+ healthy adults, stimulated them with phytohemagglutinin (PHA), PPD, Ag85B, ESAT-6, and live M. bovis BCG, and assayed IFN-γ and IL-17 secretion by ELISA in supernatants after 24 or 72 hours of incubation respectively.ResultsAs in other studies, we found a wide range of IFN-γ responses to M. tuberculosis antigens; the variation significantly exceeded that observed in the same donors to the polyclonal T cell stimulus, phytohemagglutinin (PHA). In addition, we assayed IL-17 secretion in response to the same stimuli, and found less subject-to-subject variation. Analysis of the ratio of IFN-γ to IL-17 secretion on a subject-to-subject basis also revealed a wide range, with the majority of results distributed in a narrow range, and a minority with extreme results all of which were greater than that in the majority of subjects. The data suggest that study of exceptional responses to M. tuberculosis antigens may reveal immunologic correlates with specific outcomes of M. tuberculosis infection.ConclusionVariation of IFNγ and IFN-γ/IL-17 responses to mycobacterial antigens exceeds that of responses to the polyclonal stimulus, PHA, in TST positive healthy humans. This indicates a quantitative spectrum of human immune responses to infection with M. tuberculosis. Since the outcome of human infection with M. tuberculosis varies greatly, systematic study of multiple immune responses to multiple antigens is likely to reveal correlations between selected immune responses and the outcomes of infection

    Applying an extended prototype willingness model to predict back seat safety belt use in China

    Get PDF
    The risk of injury and death in traffic accidents for passengers in the back and front seats can be reduced by utilizing safety belts. However, passengers use back seatbelts far less frequently than those in the front. More investigation is therefore required into the psychological constructs that affect individuals\u27 attitudes toward using back seat belts. In this study, four models were used to analyze individual intentions and actual back seat belt use: the standard theory of planned behavior (TPB); the standard prototype willingness model (PWM); a model that integrates the TPB and PWM constructs; and a model that integrates the TPB construct, PWM constructs, descriptive norms and perceived law enforcement. The results showed that the standard PWM has much more explanatory power than the standard TPB in explaining the variance in behavioral intention and behavior. Incorporating perceived behavioral control (PBC) into the standard PWM did not improve the model fit considerably, while incorporating descriptive norms and perceived law enforcement moderately improved the model fit. Attitude greatly impacted behavioral intention and the use of back seat belts, followed by perceived law enforcement and descriptive norms, while subjective norms, prototype favorability, prototype similarity and PBC had no significant effect

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    Geometric Origin of Non-Bloch PT Symmetry Breaking

    Full text link
    The parity-time (PT) symmetry of a non-Hermitian Hamiltonian leads to real (complex) energy spectrum when the non-Hermiticity is below (above) a threshold. Recently, it has been demonstrated that the non-Hermitian skin effect generates a new type of PT symmetry, dubbed the non-Bloch PT symmetry, featuring unique properties such as high sensitivity to the boundary condition. Despite its relevance to a wide range of non-Hermitian lattice systems, a general theory is still lacking for this generic phenomenon even in one spatial dimension. Here, we uncover the geometric mechanism of non-Bloch PT symmetry and its breaking. We find that non-Bloch PT symmetry breaking occurs by the formation of cusps in the generalized Brillouin zone (GBZ). Based on this geometric understanding, we propose an exact formula that efficiently determines the breaking threshold. Moreover, we predict a new type of spectral singularities associated with the symmetry breaking, dubbed non-Bloch van Hove singularity, whose physical mechanism fundamentally differs from their Hermitian counterparts. This singularity is experimentally observable in linear responses.Comment: 19 pages,11 figures, including supplemental materia

    N-(3-Chloro-4-eth­oxy­benzo­yl)-N′-(2-meth­oxy­phen­yl)thio­urea

    Get PDF
    In the title compound, C17H17ClN2O3S, the central carbonyl­thio­urea unit is nearly planar [maximum atomic deviation = 0.019 (3) Å] and makes dihedral angles of 2.47 (7) and 17.76 (6)° with the terminal benzene rings. An intra­molecular N—H⋯O hydrogen bond occurs. Weak inter­molecular C—H⋯S and C—H⋯Cl hydrogen bonding is observed in the crystal structure
    corecore