353 research outputs found

    Measurement of the Mass Flow and Velocity Distributions of Pulverized Fuel in Primary Air Pipes Using Electrostatic Sensing Techniques

    Get PDF
    On-line measurement of pulverized fuel (PF) distribution between primary air pipes on a coal-fired power plant is of great importance to achieve balanced fuel supply to the boiler for increased combustion efficiency and reduced pollutant emissions. An instrumentation system using multiple electrostatic sensing heads are developed and installed on 510 mm bore primary air pipes on the same mill of a 600 MW coal-fired boiler unit for the measurement of PF mass flow and velocity distributions. An array of electrostatic electrodes with different axial widths is housed in a sensing head. An electrode with a greater axial width and three narrower electrodes are used to derive the electrostatic signals for the determination of PF mass flow rate and velocity, respectively. The PF velocity is determined by multiple cross-correlation of the electrostatic signals from the narrow electrodes. The measured PF velocity is applied on the root-mean-square magnitude of the measured electrostatic signal from the wide electrode for the calibration of PF mass flow rate. On-plant comparison trials of the developed system were conducted under five typical operating conditions after a system calibration test. Isokinetic sampling equipment is used to obtain reference data to evaluate the performance of the developed system. Experimental data demonstrate that the developed system is effective and reliable for the on-line continuous measurement of the mass flow and velocity distributions between the primary air pipes of the same mill

    Characterisation of Pulverised Fuel Flow in a Square-shaped Pneumatic Conveying Pipe Using Electrostatic Sensor Arrays

    Get PDF
    Square-shaped pneumatic conveying pipes are used in some industrial processes such as fuel injection systems in coal-fired power plants and circulating fluidized beds. However, little research has been undertaken to characterise the gas-solid two-phase flow in square-shaped pneumatic conveying pipes. This paper presents novel non-intrusive electrostatic sensor arrays for measuring pulverised fuel in such pipes. The sensor arrays consist of 12 pairs of strip-shaped electrodes which are uniformly embedded in the four flat pipe walls. Experiments have been conducted on a laboratory scale test rig under a range of conditions. The fuel velocity and flow stability profiles over the whole cross-section of the square-shaped pipe are presented in this paper. Experimental results demonstrate that the proposed non-intrusive electrostatic sensor arrays are capable of characterising the velocity and flow stability profiles of pulverised fuel flow in square-shaped pneumatic conveying pipes

    Non-Contact Vibration Monitoring of Power Transmission Belts Through Electrostatic Sensing

    Get PDF
    On-line vibration monitoring plays an important role in the fault diagnosis and prognosis of industrial belt drive systems. This paper presents a novel measurement technique based on electrostatic sensing to monitor the transverse vibration of power transmission belts in an on-line, continuous, and non-contact manner. The measurement system works on the principle that variations in the distance between a strip-shaped electrode and the naturally electrified dielectric belt give rise to a fluctuating current output. The response of the sensor to a belt moving both axially and transversely is numerically calculated through finite-element modeling. Based on the sensing characteristics of the sensor, the transverse velocity of the belt is characterized through the spectral analysis of the sensor signal. Experiments were conducted on a two-pulley belt drive system to verify the validity of the sensing technique. The belt vibration at different axial speeds was measured and analyzed. The results show that the belt vibrates at well-separated modal frequencies that increase with the axial speed. A closer distance between the electrode and the belt makes higher order vibration modes identifiable, but also leads to severer signal distortion that produces higher order harmonics in the signal. On-line vibration monitoring plays an important role in the fault diagnosis and prognosis of industrial belt drive systems. This paper presents a novel measurement technique based on electrostatic sensing to monitor the transverse vibration of power transmission belts in an on-line, continuous, and non-contact manner. The measurement system works on the principle that variations in the distance between a strip-shaped electrode and the naturally electrified dielectric belt give rise to a fluctuating current output. The response of the sensor to a belt moving both axially and transversely is numerically calculated through finite-element modeling. Based on the sensing characteristics of the sensor, the transverse velocity of the belt is characterized through the spectral analysis of the sensor signal. Experiments were conducted on a two-pulley belt drive system to verify the validity of the sensing technique. The belt vibration at different axial speeds was measured and analyzed. The results show that the belt vibrates at well-separated modal frequencies that increase with the axial speed. A closer distance between the electrode and the belt makes higher order vibration modes identifiable, but also leads to severer signal distortion that produces higher order harmonics in the signal

    On-line Size Measurement of Pneumatically Conveyed Particles Through Acoustic Emission Sensing

    Get PDF
    Acoustic emission (AE) methods have been proposed for on-line size measurement of pneumatically conveyed particles in recent years. However, there is limited research on the fundamental mechanism of the AE-based particle sizing technique. In order to achieve more accurate measurement of particle size, the impact between particles and a waveguide should be described in a more realistic way. In this paper, an improved model based on the Stronge impact theory is presented to establish the relationship between the resulting AE signal and the particle size being measured. The improved model is validated with experiments on a single-particle test rig. A total five sets of glass beads with a mean diameter of 0.4, 0.6, 0.8, 1.0 and 1.2 mm, respectively, are used as the test particles with an impact velocity ranging from 22 m/s to 37 m/s. It is proven that the Stronge impact theory is more accurate to describe the collision process than the Hertzian impact theory and is thus more suitable for the particle size inversion, which is validated by comparing the inversion results using these two impact theories. Meanwhile, a good agreement is observed between the measured and reference particle sizes under different experimental conditions. The mean relative error between the measured and reference diameters is mostly within 12%

    Radial Vibration Measurement of Rotary Shafts through Electrostatic Sensing and Hilbert-Huang Transform

    Get PDF
    Radial vibration measurement of rotary shafts plays a significant part in condition monitoring and fault diagnosis of rotating machinery. This paper presents a novel method for radial vibration measurement through electrostatic sensing and HHT (Hilbert-Huang Transform) signal processing. The foundational characteristics of the electrostatic sensor in the vicinity of a drifting shaft are studied through Finite Element Modelling. Experimental tests were conducted on a purpose-built test rig to characterize the operating condition of the rotor at different rotational speeds (400 rpm and 600 rpm). A normal working shaft and an eccentric shaft were tested and the output signals from the electrostatic sensors were analyzed. Through empirical mode decomposition (EMD) on the electrostatic signals, the intrinsic mode functions (IMF) including the vibration information of the shaft are identified and further analyzed in the time-frequency domain. Experimental results suggest that the electrostatic sensing technique in conjunction with HHT provides a simple and cost-effective approach to radial vibration measurement of rotary shafts

    Quantitative Shape Measurement of An Inflatable Rubber Dam Using Inertial Sensors

    Get PDF
    Shape measurement is of great importance for the effective control and safe operation of inflatable rubber dams. This paper presents for the first time a method to measure the cross-sectional shape of a rubber dam by placing an array of inertial measurement units (IMUs) on the peripheral of the rubber dam. The IMU array measures tangent angles of the dam peripheral by fusing accelerometer and gyroscope measurements. A continuous tangent angle function is derived by interpolating the tangent angles at discrete locations using a cubic spline. Finally, the shape is reconstructed by integrating the tangent angle function along the peripheral of the rubber dam. The performance of the measurement system is validated against a camera on a purpose-built test rig. Experimental results show that the measured and reference shapes are very similar, with a maximum similarity index of 8.5% under typical conditions. In addition, it is demonstrated that the system is robust against node failure by excluding readings of faulty nodes from shape reconstruction
    • …
    corecore