1,625 research outputs found
Draft Genome Sequence of Streptomyces sp. Strain CT34, Isolated from a Ghanaian Soil Sample
Copyright © 2015 Zhai et al. This work was supported by the China “973” program (2012CB721001), the “863” Program (2012AA092201), the National Natural Science Foundation of China (31170467), and the EU FP7 project PharmaSea (312184). K.K., M.J., and H.D. thank the Royal Society–Leverhulme Trust Africa for the financial support (award AA090088) that enabled the sampling of sediments and subsequent isolation of this unique Ghanaian strain.Non peer reviewedPublisher PD
The miR-1204 regulates apoptosis in NSCLC cells by targeting DEK
Introduction. This study endeavors to analyze the effects of miR-1204 on the expression of DEK oncogene in non-small cell lung cancer (NSCLC) cell lines and to study the molecular mechanisms of these effects.
Material and methods. The miR-1204 mimics and inhibitors were transfected into the (A549 and SPC) NSCLC cells. Then the mRNA levels, cell viability, apoptosis rate, morphology and caspase activity were determined. The expression of apoptosis-related proteins Bcl-2 and Bax was also analyzed.
Results. In NSCLC cell lines (A549 and SPC), DEK mRNA levels were down-regulated in miR-1204 overexpression group. In miR-1204 inhibition group, the expression of DEK mRNA showed an opposite trend. The overexpression of miR-1204 increases the apoptosis rate in NSCLC cells. The Bcl-2 levels in the miR-1204 overexpression group were decreased, while the Bax level was increased. In the miR-1204 inhibition group, expression of Bcl-2 and Bax showed opposite trends. Cell staining revealed cell’s morphological changes; the apoptosis in the miR-1204 overexpression group revealed significant morphological features, such as brighter nuclei and nuclear condensation. Results indicated a typical characteristic of apoptosis in the miR-1204 overexpression group. Caspase-9 and Caspase-3 were involved in the apoptosis pathway, which was mediated by miR-1204 and DEK.
Conclusions. The miR-1204 induces apoptosis of NSCLC cells by inhibiting the expression of DEK. The mechanism of apoptosis involves down-regulation of Bcl-2 and up-regulation of Bax expression. Moreover, the apoptosis was mediated by mitochondria-related caspase 9/3 pathway
Variable Frequencies of Apolipoprotein E Genotypes and Its Effect on Serum Lipids in the Guangxi Zhuang and Han Children
Guangxi Zhuang, the largest ethnic minority in China, is located in the southern part of the country, and well-known to the world as the longevity village. Studies of apolipoprotein E (APOE) polymorphism in adults suggest the lower frequencies of E4 allele and E4/E4 genotype may account, in part, for the favorable lipid profiles of Guangxi Zhuang. However, the effect of APOE polymorphism on serum lipids in the Guangxi Zhuang children is yet unknown to date. In the present study, genomic DNA was extracted from 278 Guangxi Zhuang and 200 Guangxi Han children. APOE genotypes were determined by PCR-restriction fragment length polymorphism (RFLP) analysis. The fasting serum lipoprotein a [Lp(a)], total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), apolipoprotein A1 (apoA1) and apoB were measured. Our results demonstrated that no significant differences in serum lipids were observed between the Guangxi Zhuang and Han children. The E4/E4 and E4/E3 genotypic frequencies were significantly lower in the Guangxi Zhuang children compared with the Guangxi Han children, whereas for E2/E2, E3/E2 and E4/E2 genotypic frequencies the opposite was presented. Though no significant differences in serum lipid concentrations were found for variant alleles both in the Guangxi Zhuang and Han children, the trend was observed in the association of higher levels of Lp(a), TC, TG and LDL-C with E4 allele in the Guangxi Zhuang children. In conclusion, a significant heterogeneity in APOE genetic variation indeed exists between the Guangxi Zhuang and Han ethnic group. The E4 allele may serve as a genetic marker for susceptibility to higher lipid profiles in the Guangxi Zhuang children. Lifestyle should be modified, according to APOE polymorphism even in the young children
Differences in global, regional, and national time trends in disability-adjusted life years for atrial fibrillation and flutter, 1990–2019: an age-period-cohort analysis from the 2019 global burden of disease study
Background: Atrial fibrillation and flutter, collectively referred to as AF/AFL, pose substantial public health challenges across nations of different economic statuses. Abjective: This research is intended to assess the discrepancies in global, regional, and national trends in DALYs for atrial fibrillation and flutter throughout 1990 and 2019. Methods: The GBD 2019 report included statistics on AF/AFL. An age-period-cohort (APC) model was used to calculate the changes in DALYs from ages 30 to 34 years up to 95 + years. The model calculated both net drifts and local drifts in DALYs. In addition, we analysed the relative risks for certain time periods and birth cohorts from 1990 to 2019 in order to assess their impact. In order to measure the changes over time in the age-standardized rate (ASR) of DALYs caused by AF/AFL, we calculated the average annual percentage changes (AAPCs) based on age, gender, socio-demographic index (SDI), and location. This approach enables us to analyse the impact of age, period, and cohort on trends in DALYs, which may uncover disparities in the management of AF/AFL. Results: The global number of DALYs cases was 8,393,635 [95% uncertainty interval (UI): 6,693,987 to 10,541,461], indicating a 121.6% rise (95% UI: 111.5 to 132.0) compared to 1990. From 1990 to 2019, the worldwide ASR of DALYs decreased by 2.61% (95% UI −6.9 to 1.3). However, the other SDI quintiles, except for high SDI and high-middle SDI, had an increase. During the last three decades, high-income nations in the Asia Pacific region had the most significant reduction in ASR of DALYs, whereas Central Asia experienced the highest rise (with a net drift of −0.9% [95% Confidence Interval (CI): −1.0 to −0.9] and 0.6% [95% CI: 0.5 to 0.7], respectively). Approximately 50% of the burden of AF/AFL has been transferred from areas with high and high-middle SDI to those with lower SDI. There was an inverse relationship between the AAPC and the SDI. In addition, men and older individuals were shown to have a greater burden of AF/AFL DALYs. Conclusion: The findings of this research demonstrate that the worldwide impact of AF/AFL remains significant and increasing, with the burden differing depending on SDI. The exhaustive and comparable estimates provided by these results may contribute to international efforts to attain equitable AF/AFL control
Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells
In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy
Inhibition of Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase-2 Facilitates CD31hiEndomucinhi Blood Vessel and Bone Formation in Ovariectomized Mice
Background/Aims: Recently, we and others showed that the relative abundance of a specific vessel subtype, strongly positive for CD31 and Endomucin (CD31hiEmcnhi), is associated with bone formation and bone loss, and platelet-derived growth factor-BB (PDGF-BB) secreted by preosteoclasts induces the formation of the specific vessels and thereby stimulates osteogenesis. Inhibition of Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) has been shown to block the fusion of preosteoclasts into mature osteoclasts. However, it is unclear whether inhibition of SHP-2 could promote preosteoclast-induced angiogenesis and then enhance bone formation. This study aimed to determine the effects of a specific SHP-2 inhibitor (NSC-87877) on CD31 hiEmcnhi vessel and bone formation. Methods: 3-month-old C57BL/6 mice were subjected to either ovariectomy (OVX) or sham operation. OVX mice were intraperitoneally injected with NSC-87877 and the control (sham) mice were treated with an equal volume of diluents (PBS). Two months later, bone samples from mice were collected for µCT, histological, immunohistochemical and immunofluorescent analyses to assess bone mass, osteogenic and osteoclastic acitivities, as well as the densities of CD31hiEmcnhi vessels. A series of angiogenesis- related assays were performed to test the effects of NSC-87877 on the pro-angiogenic activities of preosteoclasts in vitro. Results: We found that NSC-87877 is sufficient to induce bone-sparing effects in OVX-induced osteoporotic mouse model. We also found that NSC-87877 induces higher numbers of preosteoclasts and CD31hiEmcnhi vessels and higher levels of PDGF-BB in bone marrow of osteoporotic mice. In vitro assays showed that NSC-87877 prevents preosteoclast fusion, increases PDGF-BB production, and augments the pro-angiogenic abilities of preosteoclasts. Conclusion: Our results suggest that NSC-87877 can be used as a promising therapeutic agent for osteoporosis by inhibiting osteoclast formation and promoting preosteoclast-induced angiogenesis
- …