1,517 research outputs found

    Detecting Multimedia Generated by Large AI Models: A Survey

    Full text link
    The rapid advancement of Large AI Models (LAIMs), particularly diffusion models and large language models, has marked a new era where AI-generated multimedia is increasingly integrated into various aspects of daily life. Although beneficial in numerous fields, this content presents significant risks, including potential misuse, societal disruptions, and ethical concerns. Consequently, detecting multimedia generated by LAIMs has become crucial, with a marked rise in related research. Despite this, there remains a notable gap in systematic surveys that focus specifically on detecting LAIM-generated multimedia. Addressing this, we provide the first survey to comprehensively cover existing research on detecting multimedia (such as text, images, videos, audio, and multimodal content) created by LAIMs. Specifically, we introduce a novel taxonomy for detection methods, categorized by media modality, and aligned with two perspectives: pure detection (aiming to enhance detection performance) and beyond detection (adding attributes like generalizability, robustness, and interpretability to detectors). Additionally, we have presented a brief overview of generation mechanisms, public datasets, and online detection tools to provide a valuable resource for researchers and practitioners in this field. Furthermore, we identify current challenges in detection and propose directions for future research that address unexplored, ongoing, and emerging issues in detecting multimedia generated by LAIMs. Our aim for this survey is to fill an academic gap and contribute to global AI security efforts, helping to ensure the integrity of information in the digital realm. The project link is https://github.com/Purdue-M2/Detect-LAIM-generated-Multimedia-Survey

    Label-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated Raman scattering microscopy

    Get PDF
    A finger on the pulse: Current molecular analysis of cells and tissues routinely relies on separation, enrichment, and subsequent measurements by various assays. Now, a platform of hyperspectral stimulated Raman scattering microscopy has been developed for the fast, quantitative, and label-free imaging of biomolecules in intact tissues using spectroscopic fingerprints as the contrast mechanism

    Otopetrin 1 protects mice from obesity-associated metabolic dysfunction through attenuating adipose tissue inflammation.

    Get PDF
    Chronic low-grade inflammation is emerging as a pathogenic link between obesity and metabolic disease. Persistent immune activation in white adipose tissue (WAT) impairs insulin sensitivity and systemic metabolism, in part, through the actions of proinflammatory cytokines. Whether obesity engages an adaptive mechanism to counteract chronic inflammation in adipose tissues has not been elucidated. Here we identified otopetrin 1 (Otop1) as a component of a counterinflammatory pathway that is induced in WAT during obesity. Otop1 expression is markedly increased in obese mouse WAT and is stimulated by tumor necrosis factor-α in cultured adipocytes. Otop1 mutant mice respond to high-fat diet with pronounced insulin resistance and hepatic steatosis, accompanied by augmented adipose tissue inflammation. Otop1 attenuates interferon-γ (IFN-γ) signaling in adipocytes through selective downregulation of the transcription factor STAT1. Using a tagged vector, we found that Otop1 physically interacts with endogenous STAT1. Thus, Otop1 defines a unique target of cytokine signaling that attenuates obesity-induced adipose tissue inflammation and plays an adaptive role in maintaining metabolic homeostasis in obesity

    Microchannel structure of ceramic membranes for oxygen separation

    Get PDF
    Microchanneled ceramic membranes have demonstrated superior performance in oxygen separation from air over conventional membranes. In this study, the contributions of the microchannel structure to the superior performance were investigated. Compared with supported membranes, the microchanneled membranes provide fast pathways within the channels for gas diffusion as compared to the tortuous interconnection of pore channels in the supported membranes. The walls of the numerous channels provide a large surface for facilitating oxygen dissociation, which was confirmed by varying the channel wall surface using mesh templates with different aperture sizes. In summary, the microchannel structure facilitates gas diffusion and provides a large membrane active surface, resulting in high performance in oxygen separation

    Increased Number of Tc17 and Correlation with Th17 Cells in Patients with Immune Thrombocytopenia

    Get PDF
    BACKGROUND: IL-17-secreting CD8+ T cells (Tc17 subset) have recently been defined as a subpopulation of effector T cells implicated in the pathogenesis of autoimmune diseases. The role of Tc17 and correlation with Th17 cells in the pathophysiology of immune thrombocytopenia (ITP) remain unsettled. DESIGN AND METHODS: We studied 47 ITP patients (20 newly-diagnosed and 27 with complete response) and 34 healthy controls. IL-17-producing CD3+CD8+ cells (Tc17) and IL-17-producing CD3+CD8- cells (Th17) were evaluated by flow cytometry and expressed as a percentage of the total number of CD3+ cells. Specific anti-platelet glycoprotein (GP) GPIIb/IIIa and/or GPIb/IX autoantibodies were measured by modified monoclonal antibody specific immobilization of platelet antigens. Peripheral blood mononuclear cells of ITP patients were isolated, incubated in the presence of 0, 0.25, 0.5, or 1 µmol/L of dexamethasone for 72 h, and collected to detect Tc17 and Th17 cells by flow cytometric analysis. RESULTS: IL-17 was expressed on CD3+CD8- and CD3+CD8+ T cells. The percentages of Tc17 and Th17 cells in newly-diagnosed patients were significantly elevated compared to controls, and Tc17 was decreased after clinical treatment. The Th17∶Tc17 ratio was significantly lower in newly-diagnosed patients compared with controls, and was increased in patients who had complete response. There was a significantly positive correlation between Tc17 and Th17 cells in the control group, but not in the ITP patients. A positive correlation existed between Tc17 and the CD8∶CD4 ratio, as well as CD8+ cells in patients with ITP. The frequencies of Tc17 were marginally higher in autoantibody-negative patients than autoantibody-positive patients. Moreover, both Tc17 and Th17 cell percentages decreased as the concentration of dexamethasone in the culture media increased in ITP patients. CONCLUSIONS: Tc17 and the Th17 subset are involved in the immunopathology of ITP. Blocking the abnormally increased number of Tc17 may be a reasonable therapeutic strategy for ITP

    An Intelligent and Secure Health Monitoring Scheme Using IoT Sensor Based on Cloud Computing

    Get PDF
    Internet of Things (IoT) is the network of physical objects where information and communication technology connect multiple embedded devices to the Internet for collecting and exchanging data. An important advancement is the ability to connect such devices to large resource pools such as cloud. The integration of embedded devices and cloud servers offers wide applicability of IoT to many areas of our life. With the aging population increasing every day, embedded devices with cloud server can provide the elderly with more flexible service without the need to visit hospitals. Despite the advantages of the sensor-cloud model, it still has various security threats. Therefore, the design and integration of security issues, like authentication and data confidentiality for ensuring the elderly’s privacy, need to be taken into consideration. In this paper, an intelligent and secure health monitoring scheme using IoT sensor based on cloud computing and cryptography is proposed. The proposed scheme achieves authentication and provides essential security requirements
    • …
    corecore