70 research outputs found

    Amygdala's T1-weighted image radiomics outperforms volume for differentiation of anxiety disorder and its subtype

    Get PDF
    IntroductionAnxiety disorder is the most common psychiatric disorder among adolescents, with generalized anxiety disorder (GAD) being a common subtype of anxiety disorder. Current studies have revealed abnormal amygdala function in patients with anxiety compared with healthy people. However, the diagnosis of anxiety disorder and its subtypes still lack specific features of amygdala from T1-weighted structural magnetic resonance (MR) imaging. The purpose of our study was to investigate the feasibility of using radiomics approach to distinguish anxiety disorder and its subtype from healthy controls on T1-weighted images of the amygdala, and provide a basis for the clinical diagnosis of anxiety disorder.MethodsT1-weighted MR images of 200 patients with anxiety disorder (including 103 GAD patients) as well as 138 healthy controls were obtained in the Healthy Brain Network (HBN) dataset. We extracted 107 radiomics features for the left and right amygdala, respectively, and then performed feature selection using the 10-fold LASSO regression algorithm. For the selected features, we performed group-wise comparisons, and use different machine learning algorithms, including linear kernel support vector machine (SVM), to achieve the classification between the patients and healthy controls.ResultsFor the classification task of anxiety patients vs. healthy controls, 2 and 4 radiomics features were selected from left and right amygdala, respectively, and the area under receiver operating characteristic curve (AUC) of linear kernel SVM in cross-validation experiments was 0.6739±0.0708 for the left amygdala features and 0.6403±0.0519 for the right amygdala features; for classification task for GAD patients vs. healthy controls, 7 and 3 features were selected from left and right amygdala, respectively, and the cross-validation AUCs were 0.6755±0.0615 for the left amygdala features and 0.6966±0.0854 for the right amygdala features. In both classification tasks, the selected amygdala radiomics features had higher discriminatory significance and effect sizes compared with the amygdala volume.DiscussionOur study suggest that radiomics features of bilateral amygdala potentially could serve as a basis for the clinical diagnosis of anxiety disorder

    Lack of spontaneous ocular neovascularization and attenuated laser-induced choroidal neovascularization in IGF-I overexpression transgenic mice

    Get PDF
    Robust IGF-I overexpression induces ocular angiogenesis in mice. To investigate the effect of subtle IGF-I overexpression, we examined the ocular phenotype of IGF-II promoter-driven IGF-I transgenic mice. Despite 2.5-fold elevation of IGF-I mRNA in the retina and 29 and 52% increase of IGF-I protein in the retina and aqueous humor, respectively, no ocular abnormality was observed in these transgenics. This was correlated with unaltered VEGF mRNA levels in the transgenic retina. The transgene was also associated with an attenuated laser-induced choroidal neovascularization. Differential expression levels and pattern of IGF-I gene may underlie the different retinal phenotypes in different transgenic lines

    TIR/BB-Loop Mimetic AS-1 Attenuates Cardiac Ischemia/Reperfusion Injury via a Caveolae and Caveolin-3-Dependent Mechanism

    Get PDF
    AS-1, the TIR/BB loop mimetic, plays a protective role in cardiac ischemia/reperfusion (I/R) but the molecular mechanism remains unclear. The muscle specific caveolin3 (Cav-3) and the caveolae have been found to be critical for cardioprotection. This study aimed to evaluate our hypothesis that caveolae and Cav-3 are essential for AS-1-induced cardioprotection against myocardial I/R injury. To address these issues, we analyzed the involvement of Cav-3 in AS-1 mediated cardioprotection both in vivo and in vitro. We demonstrate that AS-1 administration significantly decreased infarct size, improved cardiac function after myocardial I/R and modulated membrane caveolae and Cav-3 expression in the myocardium. For in vitro studies, AS-1 treatment prevented Cav-3 re-distribution induced by H/R injury. In contrast, disruption of caveolae by MCD treatment or Cav-3 knockdown abolished the protection against H/R-induced myocytes injury by AS-1. Our findings reveal that AS-1 attenuates myocardial I/R injury through caveolae and Cav-3 dependent mechanism

    Evaluation of Early Prognostic Factors of Mortality in Patients with Acute Pancreatitis: A Retrospective Study

    Get PDF
    Early and accurate assessment of severity in acute pancreatitis (AP) is of great importance to provide effective disease management and prevent mortality. In this study, we aim to evaluate early indicators that predict the mortality of AP. We retrospectively analyzed 24-hour clinical characteristics and laboratory data in 166 AP patients recruited between January 2014 and November 2015 in Baotou Central Hospital. In total, 18 patients did not survive the disease. Multivariate logistic regression showed that red cell distribution (RDW) (OR = 2.965, P=0.001) and creatinine (OR = 1.025, P=0.005) were early independent risk factors of AP mortality while albumin (OR = 0.920, P=0.032) levels reduced AP mortality. The corresponding optimal cut-off values were 14.45, 125.5, and 34.95, respectively. The positive predictive values of the AP mortality were 80.1%, 54.5%, and 69.5%. In combined measurement, the area under the curve of RDW, creatinine, and albumin was 0.964 (95% CI: 0.924 to 1.000, P<0.001). RDW ≥ 14.45%, creatinine ≥ 125.5 μmol/l, and albumin ≤ 34.95 g/l indicated a good predictive value for mortality in AP patients with a sensitivity of 100% and specificity of 64.2%. RDW, creatinine, and albumin may serve as early indicators for AP mortality which warrants further clinical investigation

    G9a Is Essential for EMT-Mediated Metastasis and Maintenance of Cancer Stem Cell-Like Characters in Head and Neck Squamous Cell Carcinoma

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a particularly aggressive cancer with poor prognosis, largely due to lymph node metastasis and local recurrence. Emerging evidence suggests that epithelial-to-mesenchymal transition (EMT) is important for cancer metastasis, and correlated with increased cancer stem cells (CSCs) characteristics. However, the mechanisms underlying metastasis to lymph nodes in HNSCC is poorly defined. In this study, we show that E-cadherin repression correlates with cancer metastasis and poor prognosis in HNSCC. We found that G9a, a histone methyltransferase, interacts with Snail and mediates Snail-induced transcriptional repression of E-cadherin and EMT, through methylation of histone H3 lysine-9 (H3K9). Moreover, G9a is required for both lymph node-related metastasis and TGF-β-induced EMT in HNSCC cells since knockdown of G9a reversed EMT, inhibited cell migration and tumorsphere formation, and suppressed the expression of CSC markers. Our study demonstrates that the G9a protein is essential for the induction of EMT and CSC-like properties in HNSCC. Thus, targeting the G9a-Snail axis may represent a novel strategy for treatment of metastatic HNSCC

    Autocrine Epiregulin Activates EGFR Pathway for Lung Metastasis Via EMT in Salivary Adenoid Cystic Carcinoma

    Get PDF
    Salivary adenoid cystic carcinoma (SACC) is characterized by invasive local growth and a high incidence of lung metastasis. Patients with lung metastasis have a poor prognosis. Treatment of metastatic SACC has been unsuccessful, largely due to a lack of specific targets for the metastatic cells. In this study, we showed that epidermal growth factor receptors (EGFR) were constitutively activated in metastatic lung subtypes of SACC cells, and that this activation was induced by autocrine expression of epiregulin (EREG), a ligand of EGFR. Autocrine EREG expression was increased in metastatic SACC-LM cells compared to that in non-metastatic parental SACC cells. Importantly, EREG-neutralizing antibody, but not normal IgG, blocked the autocrine EREG-induced EGFR phosphorylation and the migration of SACC cells, suggesting that EREG-induced EGFR activation is essential for induction of cell migration and invasion by SACC cells. Moreover, EREG-activated EGFR stabilized Snail and Slug, which promoted EMT and metastatic features in SACC cells. Of note, targeting EGFR with inhibitors significantly suppressed both the motility of SACC cells in vitro and lung metastasis in vivo. Finally, elevated EREG expression showed a strong correlation with poor prognosis in head and neck cancer. Thus, targeting the EREG-EGFR-Snail/Slug axis represents a novel strategy for the treatment of metastatic SACC even no genetic EGFR mutation

    Hankel determinants, Fekete-Szegö inequality, and estimates of initial coefficients for certain subclasses of analytic functions

    Get PDF
    In this paper, we define new subclasses of analytic functions related to a modified sigmoid function and analytic univalent function. Then, we attempt to investigate the upper bounds of the third and fourth Hankel determinant in the special case. Further, bound on third Hankel determinant of its inverse function is also investigated. In addition, we attempt to obtain the Fekete-Szegö inequality for the classes. Then, we estimate the bounds of initial coefficients for the function belongs to some kind of new subclasses when its inverse function also belongs to these new subclasses

    Improving Continual Relation Extraction by Distinguishing Analogous Semantics

    Full text link
    Continual relation extraction (RE) aims to learn constantly emerging relations while avoiding forgetting the learned relations. Existing works store a small number of typical samples to re-train the model for alleviating forgetting. However, repeatedly replaying these samples may cause the overfitting problem. We conduct an empirical study on existing works and observe that their performance is severely affected by analogous relations. To address this issue, we propose a novel continual extraction model for analogous relations. Specifically, we design memory-insensitive relation prototypes and memory augmentation to overcome the overfitting problem. We also introduce integrated training and focal knowledge distillation to enhance the performance on analogous relations. Experimental results show the superiority of our model and demonstrate its effectiveness in distinguishing analogous relations and overcoming overfitting.Comment: Accepted in the 61st Annual Meeting of the Association for Computational Linguistics (ACL 2023
    • …
    corecore