29 research outputs found

    Experimental and theoretical evidence for molecular forces driving surface segregation in photonic colloidal assemblies

    Get PDF
    Surface segregation in binary colloidal mixtures offers a simple way to control both surface and bulk properties without affecting their bulk composition. Here, we combine experiments and coarse-grained molecular dynamics (CG-MD) simulations to delineate the effects of particle chemistry and size on surface segregation in photonic colloidal assemblies from binary mixtures of melanin and silica particles of size ratio (Dlarge/Dsmall) ranging from 1.0 to similar to 2.2. We find that melanin and/or smaller particles segregate at the surface of micrometer-sized colloidal assemblies (supraballs) prepared by an emulsion process. Conversely, no such surface segregation occurs in films prepared by evaporative assembly. CG-MD simulations explain the experimental observations by showing that particles with the larger contact angle (melanin) are enriched at the supraball surface regardless of the relative strength of particle-interface interactions, a result with implications for the broad understanding and design of colloidal particle assemblies

    Experimental investigation of immiscible water-alternating-gas injection in ultra-high water-cut stage reservoir

    Get PDF
    Water-alternating-gas (WAG) injection is recommended as a means of improving gas mobility control. This paper describes a series of coreflood tests conducted to investigate the potential for continuous gas injection and WAG injection in ultra-high water-cut saline reservoirs. The mechanisms of immiscible water-alternating-nitrogen injection on residual oil distribution are analyzed, and pore-scale analysis is conducted. The effect of injection parameters on residual oil distribution and recovery efficiency is also evaluated. Coreflood results show that tertiary oil recovery efficiency is significantly higher using WAG injection than continuous gas injection during the ultra-high water-cut period. Pore-scale visualization illustrates the movement of gas through the waterflooded channels into the pore space previously occupied by water and residual oil, which then becomes trapped. Injected gas breaks the force balance of microscopic residual oil and reduces residual oil saturation. This mobilizes the displaced/collected residual oil into large waterfilled pores and blocks several water channels. WAG flooding can decrease free-gas saturation and increase trapped-gas saturation significantly, resulting in decreased relative permeabilities of gas and water. The experimental results indicate that appropriate WAG design parameters could enhance recovery by 15.62% when the injected pore volume of water and gas in the cycle is 0.3 PV at a gas/water injection ratio of 2:1. The results from this study will allow researchers and reservoir engineers to understand and implement immiscible WAG injection as an enhanced oil recovery method in ultra-high water-cut stage reservoirs.Cited as: Kong, D., Gao, Y., Sarma, H., Li, Y., Guo, H., Zhu, W. Experimental investigation of immiscible water-alternating-gas injection in ultra-high water-cut stage reservoir. Advances in Geo-Energy Research, 2021, 5(2): 139-152, doi: 10.46690/ager.2021.02.0

    A newly identified virus in the family potyviridae encodes two leader cysteine proteases in tandem that evolved contrasting RNA silencing suppression functions

    Get PDF
    Potyviridae is the largest family of plant-infecting RNA viruses and includes many agriculturally and economically important viral pathogens. The viruses in the family, known as potyvirids, possess single-stranded, positive-sense RNA genomes with polyprotein processing as a gene expression strategy. The N-terminal regions of potyvirid polyproteins vary greatly in sequence. Previously, we identified a novel virus species within the family, Areca palm necrotic spindle-spot virus (ANSSV), which was predicted to encode two cysteine proteases, HCPro1 and HCPro2, in tandem at the N-terminal region. Here, we present evidence showing self-cleavage activity of these two proteins and define their cis-cleavage sites. We demonstrate that HCPro2 is a viral suppressor of RNA silencing (VSR), and both the variable N-terminal and conserved C-terminal (protease domain) moieties have antisilencing activity. Intriguingly, the N-terminal region of HCPro1 also has RNA silencing suppression activity, which is, however, suppressed by its C-terminal protease domain, leading to the functional divergence of HCPro1 and HCPro2 in RNA silencing suppression. Moreover, the deletion of HCPro1 or HCPro2 in a newly created infectious clone abolishes viral infection, and the deletion mutants cannot be rescued by addition of corresponding counterparts of a potyvirus. Altogether, these data suggest that the two closely related leader proteases of ANSSV have evolved differential and essential functions to concertedly maintain viral viability.This work is supported by grants from the Hainan Major Research Fund of Science and Technology (ZDKJ201817), the National Natural Science Foundation of China (32060603), and the Central Public-interest Scientific Institution Basal Research Fund for the Chinese Academy of Tropical Agricultural Sciences (grant no. 19CXTD-33).Peer reviewe

    Single-step replacement of an unreactive C-H bond by a C-S bond using polysulfide as the direct sulfur source in anaerobic ergothioneine biosynthesis

    Full text link
    Ergothioneine, a natural longevity vitamin and antioxidant, is a thiol-histidine derivative. Recently, two types of biosynthetic pathways were reported. In the aerobic ergothioneine biosynthesis, a non-heme iron enzyme incorporates a sulfoxide to an sp2 C-H bond in trimethyl-histidine (hercynine) through oxidation reactions. In contrast, in the anaerobic ergothioneine biosynthetic pathway in a green sulfur bacterium, Chlorobium limicola, a rhodanese domain containing protein (EanB) directly replaces this unreactive hercynine C-H bond with a C-S bond. Herein, we demonstrate that polysulfide (HSSnSR) is the direct sulfur-source in EanB-catalysis. After identifying EanB's substrates, X-ray crystallography of several intermediate states along with mass spectrometry results provide additional mechanistic details for this reaction. Further, quantum mechanics/molecular mechanics (QM/MM) calculations reveal that protonation of Nπ of hercynine by Tyr353 with the assistance of Thr414 is a key activation step for the hercynine sp2 C-H bond in this trans-sulfuration reaction.R01 GM106443 - NIGMS NIH HHS; R41 AT010878 - NCCIH NIH HHSAccepted manuscrip

    Case Studies of Rock Bursts in Tectonic Areas with Facies Change

    No full text
    Although tectonic areas with facies change (i.e., variation of coal seam thickness, coal seam dip angle, or coal quality) are one of the three major geological structures that induce rock bursts, case studies of rock bursts in these tectonic structures are rare. The main objective of this study is to illustrate this issue and provide case studies that may inspire future research. Based on several typical cases of rock bursts induced by tectonic areas with facies change, the conditions conducive for these bursts are introduced and investigated in detail. Subsequently, numerical simulation is performed, showing that stress concentration exists in regions with variable coal seam thicknesses or dip angle. When stoping or tunnelling approaches this region, the peak stress increases rapidly. Thus, the burst occurs via a mechanism involving the superposition of high in-situ stress from tectonic areas with facies change and abutment pressure from stoping or tunnelling, leading to high stress concentration. Strategies for mitigating rock bursts are also provided. Rock bursts induced by tectonic areas with facies change can be mitigated by avoiding regions of high tectonic stress concentration and reducing mining induced stress

    Experimental study on flow characteristics of gas transport in micro- and nanoscale pores

    No full text
    Gas flow behavior in porous media with micro-and nanoscale pores has always been attracted great attention. Gas transport mechanism in such pores is a complex problem, which includes continuous flow, slip flow and transition flow. In this study, the microtubes of quartz microcapillary and nanopores alumina membrane were used, and the gas flow measurements through the microtubes and nanopores with the diameters ranging from 6.42 mu m to 12.5 nm were conducted. The experimental results show that the gas flow characteristics are in rough agreement with the Hagen-Poiseuille (H-P) equation in microscale. However, the flux of gas flow through the nanopores is larger than the H-P equation by more than an order of magnitude, and thus the H-P equation considerably underestimates gas flux. The Knudsen diffusion and slip flow coexist in the nanoscale pores and their contributions to the gas flux increase as the diameter decreases. The slip flow increases with the decrease in diameter, and the slip length decreases with the increase in driving pressure. Furthermore, the experimental gas flow resistance is less than the theoretical value in the nanopores and the flow resistance decreases along with the decrease in diameter, which explains the phenomenon of flux increase and the occurrence of a considerable slip length in nanoscale. These results can provide insights into a better understanding of gas flow in micro-and nanoscale pores and enable us to exactly predict and actively control gas slip
    corecore