276 research outputs found

    Fractal approach to calculate the thermal conductivity of moist soil

    Get PDF
    The ground heat exchanger (GHE) is a key component in the design of a GSHP system and the effective thermal conductivity is one of the most important parameters that determine the heat transfer underground. In this paper, the effect of particle sizes and distributions on the sand thermal conductivity were studied both experimentally and analytically. Fractal method was considered for simulating the thermal conductivity of both dry and moist, unsaturated sand. Seven types of dry sand samples and six types of moist, unsaturated sand were selected in the experiments and results showed that both porosity, fractal dimension and particle size ratio affect the sand thermal conductivity. Based on the fractal theory, the fractal models were applied to predict the sand thermal conductivity under both dry and wet conditions. By comparing to the experimental findings, the proposed model was able to predict the variation on the sand thermal conductivity. However, the contact thermal resistance and water distribution pattern are two key impacts on the soil behaviors and need to be further studied

    Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors

    Full text link
    A critical challenge for the integration of the optoelectronics is that photodetectors have relatively poor sensitivities at the nanometer scale. It is generally believed that a large electrodes spacing in photodetectors is required to absorb sufficient light to maintain high photoresponsivity and reduce the dark current. However, this will limit the optoelectronic integration density. Through spatially resolved photocurrent investigation, we find that the photocurrent in metal-semiconductor-metal (MSM) photodetectors based on layered GaSe is mainly generated from the photoexcited carriers close to the metal-GaSe interface and the photocurrent active region is always close to the Schottky barrier with higher electrical potential. The photoresponsivity monotonically increases with shrinking the spacing distance before the direct tunneling happen, which was significantly enhanced up to 5,000 AW-1 for the bottom contacted device at bias voltage 8 V and wavelength of 410 nm. It is more than 1,700-fold improvement over the previously reported results. Besides the systematically experimental investigation of the dependence of the photoresponsivity on the spacing distance for both the bottom and top contacted MSM photodetectors, a theoretical model has also been developed to well explain the photoresponsivity for these two types of device configurations. Our findings realize shrinking the spacing distance and improving the performance of 2D semiconductor based MSM photodetectors simultaneously, which could pave the way for future high density integration of 2D semiconductor optoelectronics with high performances.Comment: 25 pages, 4 figure

    A Survey on Temporal Knowledge Graph Completion: Taxonomy, Progress, and Prospects

    Full text link
    Temporal characteristics are prominently evident in a substantial volume of knowledge, which underscores the pivotal role of Temporal Knowledge Graphs (TKGs) in both academia and industry. However, TKGs often suffer from incompleteness for three main reasons: the continuous emergence of new knowledge, the weakness of the algorithm for extracting structured information from unstructured data, and the lack of information in the source dataset. Thus, the task of Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention, aiming to predict missing items based on the available information. In this paper, we provide a comprehensive review of TKGC methods and their details. Specifically, this paper mainly consists of three components, namely, 1)Background, which covers the preliminaries of TKGC methods, loss functions required for training, as well as the dataset and evaluation protocol; 2)Interpolation, that estimates and predicts the missing elements or set of elements through the relevant available information. It further categorizes related TKGC methods based on how to process temporal information; 3)Extrapolation, which typically focuses on continuous TKGs and predicts future events, and then classifies all extrapolation methods based on the algorithms they utilize. We further pinpoint the challenges and discuss future research directions of TKGC

    Morphology and properties of carbon nanotubes modified epoxy

    Get PDF
    Conference Name:International Conference on Advanced Engineering Materials and Technology (AEMT2011). Conference Address: Sanya, PEOPLES R CHINA. Time:JUL 29-31, 2011.Multi-walled carbon nanobutes (MWNTs) reinforced epoxy resin nanocomposites were fabricated by functionalizing the MWNTs with amino group. The functionlization of MWNTs was characterized by FTIR, elementary analysis, and TEM, and the MWNTs dispersion was characterized by optical microscopy and SEM. MWNTs functionalization with ethylene diamine improved the nanotube dispersion in the epoxy matrix composites. The dynamic mechanical thermal properties and thermal properties of MWNTs/epoxy nanocomposites are briefly discussed in terms of the MWNT loading and dispersion
    corecore