9,658 research outputs found

    Non-local Geometry inside Lifshitz Horizon

    Full text link
    Based on the quantum renormalization group, we derive the bulk geometry that emerges in the holographic dual of the fermionic U(N) vector model at a nonzero charge density. The obstruction that prohibits the metallic state from being smoothly deformable to the direct product state under the renormalization group flow gives rise to a horizon at a finite radial coordinate in the bulk. The region outside the horizon is described by the Lifshitz geometry with a higher-spin hair determined by microscopic details of the boundary theory. On the other hand, the interior of the horizon is not described by any Riemannian manifold, as it exhibits an algebraic non-locality. The non-local structure inside the horizon carries the information on the shape of the filled Fermi sea.Comment: 20 page

    Stretching-induced conductance variations as fingerprints of contact configurations in single-molecule junctions

    Full text link
    Molecule-electrode contact atomic structures are a critical factor that characterizes molecular devices, but their precise understanding and control still remain elusive. Based on combined first-principles calculations and single-molecule break junction experiments, we herein establish that the conductance of alkanedithiolate junctions can both increase and decrease with mechanical stretching and the specific trend is determined by the S-Au linkage coordination number (CN) or the molecule-electrode contact atomic structure. Specifically, we find that the mechanical pulling results in the conductance increase for the junctions based on S-Au CN two and CN three contacts, while the conductance is minimally affected by stretching for junctions with the CN one contact and decreases upon the formation of Au monoatomic chains. Detailed analysis unravels the mechanisms involving the competition between the stretching-induced upshift of the highest occupied molecular orbital-related states toward the Fermi level of electrodes and the deterioration of molecule-electrode electronic couplings in different contact CN cases. Moreover, we experimentally find a higher chance to observe the conductance enhancement mode under a faster elongation speed, which is explained by ab initio molecular dynamics simulations that reveal an important role of thermal fluctuations in aiding deformations of contacts into low-coordination configurations that include monoatomic Au chains. Pointing out the insufficiency in previous notions of associating peak values in conductance histograms with specific contact atomic structures, this work resolves the controversy on the origins of ubiquitous multiple conductance peaks in S-Au-based single-molecule junctions.Comment: 11 pages, 4 figures; to be published in J. Am. Chem. So

    Two-gap and paramagnetic pair-breaking effects on upper critical field of SmFeAsO0.85_{0.85} and SmFeAsO0.8_{0.8}F0.2_{0.2} single crystals

    Full text link
    We investigated the temperature dependence of the upper critical field [Hc2(T)H_{c2}(T)] of fluorine-free SmFeAsO0.85_{0.85} and fluorine-doped SmFeAsO0.8_{0.8}F0.2_{0.2} single crystals by measuring the resistive transition in low static magnetic fields and in pulsed fields up to 60 T. Both crystals show that Hc2(T)H_{c2}(T)'s along the c axis [Hc2c(T)H_{c2}^c(T)] and in an abab-planar direction [Hc2ab(T)H_{c2}^{ab}(T)] exhibit a linear and a sublinear increase, respectively, with decreasing temperature below the superconducting transition. Hc2(T)H_{c2}(T)'s in both directions deviate from the conventional one-gap Werthamer-Helfand-Hohenberg theoretical prediction at low temperatures. A two-gap nature and the paramagnetic pair-breaking effect are shown to be responsible for the temperature-dependent behavior of Hc2cH_{c2}^c and Hc2abH_{c2}^{ab}, respectively.Comment: 21 pages, 8 figure

    Direct observation of microscopic change induced by oxygen vacancy drift in amorphous TiO2 thin films

    Get PDF
    To clarify the resistive switching and failure mechanisms in Al/amorphous TiO2 /Al devices we investigate the microscopic change in amorphous titanium oxide films and interface layers after the set process according to film deposition temperatures. For low temperature (<150 ??C) samples, the thickness of top interface layer decreased after the set process due to the dissociation of a top interface layer by uniform migration of oxygen vacancies. Meanwhile, for high temperature samples, crystalline TiO phases emerged in the failed state, meaning the formation of conducting paths from the local clustering of oxygen vacancies in nonhomogeneous titanium oxide film.open221
    corecore