107 research outputs found

    A Multiple Parameters Biodosimetry Tool with Various Blood Cell Counts - the Hemodose Approach

    Get PDF
    There continue to be important concerns about the possibility of the occurrence of acute radiation syndromes following nuclear and radiological terrorism or accidents that may result in mass casualties in densely populated areas. To guide medical personnel in their clinical decisions for effective medical management and treatment of the exposed individuals, biological markers are usually applied to examine radiation induced biological changes to assess the severity of radiation injury to sensitive organ systems. Among these the peripheral blood cell counts are widely used to assess the extent of radiation induced bone marrow injury. This is due to the fact that the hematopoietic system is the most vulnerable part of the human body to radiation damage. Particularly, the lymphocyte, granulocyte, and platelet cells are the most radiosensitive of the blood elements, and monitoring their changes after exposure is regarded as a practical and recommended laboratory test to estimate radiation dose and injury. Based upon years of physiological and pathophysiological investigation of mammalian hematopoietic systems, and rigorous coarse-grained bio-mathematical modeling and validation on species from mouse, to dog, monkey, and human, we have developed a set of software tools Hemodose, which can use single or serial granulocyte, lymphocyte, leukocyte, or platelet counts after exposure to estimate absorbed doses of adult victims very rapidly and accurately. Some patient data from historical accidents are utilized as examples to demonstrate the capabilities of these tools as a rapid point-of-care diagnostic or centralized high-throughput assay system in a large-scale radiological disaster scenario. Most significant to the improvement of national and local preparedness of a potential nuclear/radiological disaster, this HemoDose approach establishes robust correlations between the absorbed doses and victim's various types of blood cell counts not only in the early time window (1 or 2 days), but also in the very late phase (up to 4 weeks) after exposure

    Epidermal Homeostasis and Radiation Responses in a Multiscale Tissue Modeling Framework

    Get PDF
    The surface of skin is lined with several thin layers of epithelial cells that are maintained throughout life time by a small population of stem cells. High dose radiation exposures could injure and deplete the underlying proliferative cells and induce cutaneous radiation syndrome. In this work we propose a multiscale computational model for skin epidermal dynamics that links phenomena occurring at the subcellular, cellular, and tissue levels of organization, to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis. Incorporating experimentally measured histological and cell kinetic parameters, we obtain results of population kinetics and proliferation indexes comparable to observations in unirradiated and acutely irradiated swine experiments. At the sub-cellular level, several recently published Wnt signaling controlled cell-cycle models are applied and the roles of key components and parameters are analyzed. Based on our simulation results, we demonstrate that a moderate increase of proliferation rate for the survival proliferative cells is sufficient to fully repopulate the area denuded by high dose radiation, as long as the integrity of underlying basement membrane is maintained. Our work highlights the importance of considering proliferation kinetics as well as the spatial organization of tissues when conducting in vivo investigations of radiation responses. This integrated model allow us to test the validity of several basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and enhance our understanding of the pathophysiological effects of ionizing radiation on skin

    A Biomathematical Model of Lymphopoiesis and Its Application to Acute and Chronic Irradiation Assessment

    Get PDF
    After the events of September 11, 2001, there is an increasing concern of the occurrence of radiological terrorism that may result in significant casualties in densely populated areas. Much effort has been made to establish various biomarkers to rapidly assess radiation dose in mass-casualty and population-monitoring scenarios, which are demanded for effective medical management and treatment of the exposed victims. Among these the count of lymphocytes in peripheral blood and their depletion kinetics are the most important early indicators of the severity of the radiation injury. In this study, we examine a biomathematical model of lymphopoiesis which has been successfully utilized to simulate and interpret experimental data of acute and chronic irradiations on rodents [1]. With revised parameters for humans, we find this model can reproduce several sets of clinical lymphocyte data of accident victims over a wide range of absorbed doses. In addition, the absolute lymphocyte counts and the depletion rate constants calculated by this model also show good correlation with the Guskova formula and the Goans model, the two empirical tools which have been widely recognized for early estimation of the exposed dose after radiation accidents [2]. We also use the model to analyze the hematological data of the Techa River residents which were exposed to chronic low-dose irradiation during 1950-1956 [3]. This model can serve as a computational tool in radiation accident management, military operations involving nuclear warfare, radiation therapy, and space radiation risk assessment

    Interactions of Ku70/80 with Double-Strand DNA: Energetic, Dynamics, and Functional Implications

    Get PDF
    Space radiation is a proficient inducer of DNA damage leading to mutation, aberrant cell signaling, and cancer formation. Ku is among the first responding proteins in nucleus to recognize and bind the DNA double strand breaks (DSBs) whenever they are introduced. Once loaded Ku works as a scaffold to recruit other repair factors of non-homologous end joining and facilitates the following repair processes. The crystallographic study of the Ku70/80 heterodimer indicate the core structure of this protein shows virtually no conformational change after binding with DNA. To investigate the dynamical features as well as the energetic characteristics of Ku-DNA binding, we conduct multi-nanosecond molecular dynamics simulations of a modeled Ku70/80 structure and several complexes with two 24-bp DNA duplexes. Free energy calculations show significant energy differences between the complexes with Ku bound at DSBs and those with Ku associated at an internal site of a chromosome. The results also reveal detailed interactions between different nucleotides and the amino acids along the DNA-binding cradle of Ku, indicating subtle binding preference of Ku at specific DNA sequences. The covariance matrix analyses along the trajectories demonstrate the protein is stimulated to undergo correlated motions of different domains once bound to DNA ends. Additionally, principle component analyses identify these low frequency collective motions suitable for binding with and translocation along duplex DNA. It is proposed that the modification of dynamical properties of Ku upon binding with DSBs may provide a signal for the further recruitment of other repair factors such as DNA-PKcs, XLF, and XRCC4

    Atomic Simulation of Complex DNA DSBs and the Interactions with the Ku70/80 Heterodimer

    Get PDF
    DNA double strand breaks (DSBs) induced by ionizing radiation (IR) usually contain modified bases such as 8-oxo-7,8-dihydroguanine (8-oxoG) and thymine glycol, apurinic/apyrimidinic (AP) sites, 2-deoxyribonolactone, or single-strand breaks (SSBs). The presence of such lesions in close proximity to the DSB terminus makes the DNA nicks more difficult to repair and rejoin than endogenously induced simple DSBs, and as such a major determinant of the biological effects of high linear energy transfer (LET) radiation as encountered in space travel. In this study we conducted molecular dynamics simulations on a series of DNA duplexes with various complex lesions of 8-oxoG and AP sites, in an effort to investigate the effects of such lesions to the structural integrity and stability of DNA after insulted by IR. We also simulated the interaction of such complex DSBs with the Ku70/80 heterodimer, the first protein in mammalian cells to embark the non-homologous end joining (NHEJ) DNA repair pathway. The results indicate, compared to DNA with simple DSBs, the complex lesions can enhance the hydrogen bonds opening rate at the DNA terminus, and increase the mobility of the whole duplex, thus they present more deleterious effects to the genome integrity if not captured and repaired promptly in cells. Simulations also demonstrate the binding of Ku drastically reduces structural disruption and flexibility caused by the complex lesions, and the interactions of Ku with complex DSBs have a different potential energy landscape from the bound structure with simple DSB. In all complex DSBs systems, the binding of DSB terminus with Ku70 is softened while the binding of the middle duplex with Ku80 is tightened. This energy shift may help the Ku protein to secure at the DSB terminus for a longer time, so that other end processing factors or repair pathways can proceed at the lesions before NHEJ repair process starts. These atomic simulations may provide valuable new insight into the selective action of repair proteins on damaged DNA

    A Multiscale Computational Model of the Response of Swine Epidermis After Acute Irradiation

    Get PDF
    Radiation exposure from Solar Particle Events can lead to very high skin dose for astronauts on exploration missions outside the protection of the Earth s magnetic field [1]. Assessing the detrimental effects to human skin under such adverse conditions could be predicted by conducting territorial experiments on animal models. In this study we apply a computational approach to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis [2]. Incorporating experimentally measured histological and cell kinetic parameters into a multiscale tissue modeling framework, we obtain results of population kinetics and proliferation index comparable to unirradiated and acutely irradiated swine experiments [3]. It is noted the basal cell doubling time is 10 to 16 days in the intact population, but drops to 13.6 hr in the regenerating populations surviving irradiation. This complex 30-fold variation is proposed to be attributed to the shortening of the G1 phase duration. We investigate this radiation induced effect by considering at the sub-cellular level the expression and signaling of TGF-beta, as it is recognized as a key regulatory factor of tissue formation and wound healing [4]. This integrated model will allow us to test the validity of various basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and should lead to a fuller understanding of the pathophysiological effects of ionizing radiation on the skin

    HEMODOSE: A Set of Multi-parameter Biodosimetry Tools

    Get PDF
    There continues to be important concerns of the possibility of the occurrence of acute radiation syndromes following nuclear and radiological terrorism or accidents that may result in mass casualties in densely populated areas. To guide medical personnel in their clinical decisions for effective medical management and treatment of the exposed individuals, biological markers are usually applied to examine radiation induced biological changes to assess the severity of radiation injury to sensitive organ systems. Among these the peripheral blood cell counts are widely used to assess the extent of radiation induced bone marrow (BM) injury. This is due to the fact that hematopoietic system is a vulnerable part of the human body to radiation damage. Particularly, the lymphocyte, granulocyte, and platelet cells are the most radiosensitive of the blood elements, and monitoring their changes after exposure is regarded as a practical and recommended laboratory test to estimate radiation dose and injury. In this work we describe the HEMODOSE web tools, which are built upon solid physiological and pathophysiological understanding of mammalian hematopoietic systems, and rigorous coarse-grained biomathematical modeling and validation. Using single or serial granulocyte, lymphocyte, leukocyte, or platelet counts after exposure, these tools can estimate absorbed doses of adult victims very rapidly and accurately to assess the severity of BM radiation injury. Some patient data from historical accidents are utilized as examples to demonstrate the capabilities of these tools as a rapid point-of-care diagnostic or centralized high-throughput assay system in a large-scale radiological disaster scenario. HEMODOSE web tools establish robust correlations between the absorbed doses and victim's various types of blood cell counts not only in the early time window (1 or 2 days), but also in very late phase (up to 4 weeks) after exposure

    Real Time Radiation Exposure And Health Risks

    Get PDF
    Radiation from solar particle events (SPEs) poses a serious threat to future manned missions outside of low Earth orbit (LEO). Accurate characterization of the radiation environment in the inner heliosphere and timely monitoring the health risks to crew are essential steps to ensure the safety of future Mars missions. In this project we plan to develop an approach that can use the particle data from multiple satellites and perform near real-time simulations of radiation exposure and health risks for various exposure scenarios. Time-course profiles of dose rates will be calculated with HZETRN and PDOSE from the energy spectrum and compositions of the particles archived from satellites, and will be validated from recent radiation exposure measurements in space. Real-time estimation of radiation risks will be investigated using ARRBOD. This cross discipline integrated approach can improve risk mitigation by providing critical information for risk assessment and medical guidance to crew during SPEs

    Prototype Biology-Based Radiation Risk Module Project

    Get PDF
    Biological effects of space radiation and risk mitigation are strategic knowledge gaps for the Evolvable Mars Campaign. The current epidemiology-based NASA Space Cancer Risk (NSCR) model contains large uncertainties (HAT #6.5a) due to lack of information on the radiobiology of galactic cosmic rays (GCR) and lack of human data. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. Our proposed study will compare DNA damage, histological, and cell kinetic parameters after irradiation in normal 2D human cells versus 3D tissue models, and it will use a multi-scale computational model (CHASTE) to investigate various biological processes that may contribute to carcinogenesis, including radiation-induced cellular signaling pathways. This cross-disciplinary work, with biological validation of an evolvable mathematical computational model, will help reduce uncertainties within NSCR and aid risk mitigation for radiation-induced carcinogenesis

    Modeling Acute Health Effects of Astronauts from Exposure to Large Solar Particle Events

    Get PDF
    In space exploration outside the Earth s geomagnetic field, radiation exposure from solar particle events (SPE) presents a health concern for astronauts, that could impair their performance and result in possible failure of the mission. Acute risks are of special concern during extra-vehicular activities because of the rapid onset of SPE. However, most SPEs will not lead to acute risks but can lead to mission disruption if accurate projection methods are not available. Acute Radiation Sickness (ARS) is a group of clinical syndromes developing acutely (within several seconds to 3 days) after high dose whole-body or significant partial-body ionizing radiation exposures. The manifestation of these syndromes reflects the disturbance of physiological processes of various cellular groups damaged by radiation. Hematopoietic cells, skin, epithelium, intestine, and vascular endothelium are among the most sensitive tissues of human body to ionizing radiation. Most ARS symptoms are directly related to these tissues and other systems (nervous, endocrine, and cardiovascular, etc.) with coupled regulations. Here we report the progress in bio-mathematical models to describe the dose and time-dependent early human responses to ionizing radiation. The responses include lymphocyte depression, granulocyte modulation, fatigue and weakness syndrome, and upper gastrointestinal distress. The modest dose and dose-rates of SPEs are predicted to lead to large sparing of ARS, however detailed experimental data on a range of proton dose-rates for organ doses from 0.5 to 2 Gy is needed to validate the models. We also report on the ARRBOD code that integrates the BRYNTRN and SUMDOSE codes, which are used to estimate the SPE organ doses for astronauts under various space travel scenarios, with our models of ARS. The more recent effort is to provide easy web access to space radiation risk assessment using the ARRBOD code
    • …
    corecore