A Multiscale Computational Model of the Response of Swine Epidermis after Acute Irradiation

Shaowen Hu¹, Francis A. Cucinotta²

¹Universities Space Research Association, Division of Space Life Sciences, Houston, TX 77058 ²NASA, Lyndon B. Johnson Space Center, Houston, TX 77058

ABSTRACT

Radiation exposure from Solar Particle Events can lead to very high skin dose for astronauts on exploration missions outside the protection of the Earth's magnetic field [1]. Assessing the detrimental effects to human skin under such adverse conditions could be predicted by conducting territorial experiments on animal models. In this study we apply a computational approach to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis [2]. Incorporating experimentally measured histological and cell kinetic parameters into a multiscale tissue modeling framework, we obtain results of population kinetics and proliferation index comparable to unirradiated and acutely irradiated swine experiments [3]. It is noted the basal cell doubling time is 10 to 16 days in the intact population, but drops to 13.6 hr in the regenerating populations surviving irradiation. This complex 30-fold variation is proposed to be attributed to the shortening of the G₁ phase duration. We investigate this radiation induced effect by considering at the sub-cellular level the expression and signaling of TGF- β , as it is recognized as a key regulatory factor of tissue formation and wound healing [4]. This integrated model will allow us to test the validity of various basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and should lead to a fuller understanding of the pathophysiological effects of ionizing radiation on the skin.

References:

- Hu S., Kim M. Y., McClellan G. E., Cucinotta F. A., Modeling the acute health effects to astronauts from exposure to solar particle events. Health Phys. 2009 Apr;96(4):465-76
- [2] Potten C.S., Radiation and Skin, Taylor & Francis, 1985
- [3] Archambeau J.O., Ines A., Fajardo L.F., Response of swine skin microvasculature to acute single exposures of X rays: Quantification of endothelial changes. Radiat. Res., 1984 Apr;98(1):37-51
- [4] Adra S., Sun T., MacNeil S., Holcombe M., Smallwood R., Development of a three dimensional multiscale computational model of the human epidermis. PLoS ONE 5(1): e8511, 2010.