31,114 research outputs found

    ZOOpt: Toolbox for Derivative-Free Optimization

    Full text link
    Recent advances of derivative-free optimization allow efficient approximating the global optimal solutions of sophisticated functions, such as functions with many local optima, non-differentiable and non-continuous functions. This article describes the ZOOpt (https://github.com/eyounx/ZOOpt) toolbox that provides efficient derivative-free solvers and are designed easy to use. ZOOpt provides a Python package for single-thread optimization, and a light-weighted distributed version with the help of the Julia language for Python described functions. ZOOpt toolbox particularly focuses on optimization problems in machine learning, addressing high-dimensional, noisy, and large-scale problems. The toolbox is being maintained toward ready-to-use tool in real-world machine learning tasks

    Towards a Virtualized Next Generation Internet

    Get PDF
    A promising solution to overcome the Internet ossification is network virtualization in which Internet Service Providers (ISPs) are decoupled into two tiers: service providers (SPs), and infrastructure providers (InPs). The former maintain and customize virtual network(s) to meet the service requirement of end-users, which is mapped to the physical network infrastructure that is managed and deployed by the latter via the Virtual Network Embedding (VNE) process. VNE consists of two major components: node assignment, and link mapping, which can be shown to be NP-Complete. In the first part of the dissertation, we present a path-based ILP model for the VNE problem. Our solution employs a branch-and-bound framework to resolve the integrity constraints, while embedding the column generation process to effectively obtain the lower bound for branch pruning. Different from existing approaches, the proposed solution can either obtain an optimal solution or a near-optimal solution with guarantee on the solution quality. A common strategy in VNE algorithm design is to decompose the problem into two sequential sub-problems: node assignment (NA) and link mapping (LM). With this approach, it is inexorable to sacrifice the solution quality since the NA is not holistic and not-reversible. In the second part, we are motivated to answer the question: Is it possible to maintain the simplicity of the Divide-and-Conquer strategy while still achieving optimality? Our answer is based on a decomposition framework supported by the Primal-Dual analysis of the path-based ILP model. This dissertation also attempts to address issues in two frontiers of network virtualization: survivability, and integration of optical substrate. In the third part, we address the survivable network embedding (SNE) problem from a network flow perspective, considering both splittable and non-splittable flows. In addition, the explosive growth of the Internet traffic calls for the support of a bandwidth abundant optical substrate, despite the extra dimensions of complexity caused by the heterogeneities of optical resources, and the physical feature of optical transmission. In this fourth part, we present a holistic view of motivation, architecture, and challenges on the way towards a virtualized optical substrate that supports network virtualization
    • …
    corecore