42 research outputs found
Recommended from our members
Attenuation of RNA polymerase II pausing mitigates BRCA1-associated R-loop accumulation and tumorigenesis.
Most BRCA1-associated breast tumours are basal-like yet originate from luminal progenitors. BRCA1 is best known for its functions in double-strand break repair and resolution of DNA replication stress. However, it is unclear whether loss of these ubiquitously important functions fully explains the cell lineage-specific tumorigenesis. In vitro studies implicate BRCA1 in elimination of R-loops, DNA-RNA hybrid structures involved in transcription and genetic instability. Here we show that R-loops accumulate preferentially in breast luminal epithelial cells, not in basal epithelial or stromal cells, of BRCA1 mutation carriers. Furthermore, R-loops are enriched at the 5' end of those genes with promoter-proximal RNA polymerase II (Pol II) pausing. Genetic ablation of Cobra1, which encodes a Pol II-pausing and BRCA1-binding protein, ameliorates R-loop accumulation and reduces tumorigenesis in Brca1-knockout mouse mammary epithelium. Our studies show that Pol II pausing is an important contributor to BRCA1-associated R-loop accumulation and breast cancer development
Attenuation of RNA polymerase II pausing mitigates BRCA1-associated R-loop accumulation and tumorigenesis
Most BRCA1-associated breast tumours are basal-like yet originate from luminal progenitors. BRCA1 is best known for its functions in double-strand break repair and resolution of DNA replication stress. However, it is unclear whether loss of these ubiquitously important functions fully explains the cell lineage-specific tumorigenesis. In vitro studies implicate BRCA1 in elimination of R-loops, DNA-RNA hybrid structures involved in transcription and genetic instability. Here we show that R-loops accumulate preferentially in breast luminal epithelial cells, not in basal epithelial or stromal cells, of BRCA1 mutation carriers. Furthermore, R-loops are enriched at the 50 end of those genes with promoter-proximal RNA polymerase II (Pol II) pausing. Genetic ablation of Cobra1, which encodes a Pol II-pausing and BRCA1-binding protein, ameliorates R-loop accumulation and reduces tumorigenesis in Brca1-knockout mouse mammary epithelium. Our studies show that Pol II pausing is an important contributor to BRCA1-associated R-loop accumulation and breast cancer development
Brca1 antibodies matter
Breast cancer susceptibility gene 1 (BRCA1) encodes a tumor suppressor that is frequently mutated in familial breast and ovarian cancer patients. BRCA1 functions in multiple important cellular processes including DNA damage repair, cell cycle checkpoint activation, protein ubiquitination, chromatin remodeling, transcriptional regulation, as well as R-loop formation and apoptosis. A large number of BRCA1 antibodies have been generated and become commercially available over the past three decades, however, many commercial antibodies are poorly characterized and, when widely used, led to unreliable data. In search of reliable and specific BRCA1 antibodies (Abs), particularly antibodies recognizing mouse BRCA1, we performed a rigorous validation of a number of commercially available anti-BRCA1 antibodies, using proper controls in a panel of validation applications, including Western blot (WB), immunoprecipitation (IP), immunoprecipitation-mass spectrometry (IP-MS), chromatin immunoprecipitation (ChIP) and immunofluorescence (IF). Furthermore, we assessed the specificity of these antibodies to detect mouse BRCA1 protein through the use of testis tissue and mouse embryonic fibroblasts (MEFs) from Brca1+/+ and Brca1Ī11/Ī11 mice. We find that Ab1, D-9, 07-434 (for recognizing human BRCA1) and 287.17, 440621, BR-64 (for recognizing mouse BRCA1) are specific with high quality performance in the indicated assays. We share these results here with the goal of helping the community combat the common challenges associated with anti-BRCA1 antibody specificity and reproducibility and, hopefully, better understanding BRCA1 functions at cellular and tissue levels
Effects of Radiation Therapy on Breast Epithelial Cells in Mutation Carriers
Women carrying BRCA1 and BRCA2 mutations have significantly elevated risk of developing breast and ovarian cancers. BRCA1 -associated breast cancer likely originates from progenitors of the luminal epithelial lineage. Recent studies indicate that radiation therapy (RT) for BRCA1 cancer patients is associated with lower incidence of developing subsequent ipsilateral breast cancer. In the current study, we analyzed tumor-free breast tissue procured via prophylactic bilateral mastectomy from three BRCA1 and one BRCA2 mutation carriers, who had been previously treated with RT for unilateral breast cancers. Freshly isolated breast cells from the irradiated and nonirradiated breast tissue of the same individuals were subjected to flow cytometry, using established cell-surface markers. Two out of the three BRCA1 carriers and one BRCA2 carrier exhibited significantly diminished luminal cell population in the irradiated breast versus the nonirradiated side. There was also RT-associated reduction in the colony-forming ability of the breast epithelial cells. Our finding suggests that prior RT could result in the depletion of the luminal epithelial compartment and thus reduced incidence of BRCA1/2 -associated breast cancer
Genome Analysis of a Novel Tembusu Virus in Taiwan
We identified and isolated a novel Tembusu virus (TMUV) strain TP1906 (TMUV-TP1906) from a Culex annulus mosquito pool collected from the northern part of Taiwan in 2019. The TMUV-TP1906 genome is a 10,990-nucleotide-long, positive-sense, single-stranded RNA, consisting of a single open reading frame (ORF) encoding a polyprotein of 3425 amino acids, with 5′ and 3′ untranslated regions (UTRs) of 94 and 618 nucleotides, respectively. The nucleotide sequence of the TMUV-TP1906 of ORF exhibited 93.71% and 91.27% similarity with Sitiawan virus (STWV) and the TMUV prototype strain MM1775, respectively. The 3′-UTR variable region of TMUV-TP1906 showed nucleotide sequence divergence with other TMUV strains. Phylogenetic analysis of the complete ORF and polyprotein sequences revealed that TMUV-TP1906 is most closely related to STWV which causes encephalitis and retarded growth in chickens. We found that the TMUV-TP1906 caused a cytopathic effect (CPE) in the DF-1 chicken fibroblast cell line, while no apparent CPE was observed in Vero and C6/36 cells. In this study, we first identified and isolated a novel TMUV strain in Taiwan. In addition, to our knowledge, it is the first time that the TMUV strain was isolated from the Cx. annulus mosquitoes. Further study is warranted to investigate the host range and virulence of TMUV-TP1906
Genetic ablation of adipocyte PD-L1 reduces tumor growth but accentuates obesity-associated inflammation.
The programmed death-ligand 1 (PD-L1)-dependent immune checkpoint attenuates host immunity and maintains self-tolerance. Imbalance between protective immunity and immunopathology due to altered PD-L1 signaling can lead to autoimmunity or tumor immunosuppression. The role of the PD-L1-dependent checkpoint in non-immune system is less reported. We previously found that white adipocytes highly express PD-L1. Here we show that adipocyte-specific PD-L1 knockout mice exhibit enhanced host anti-tumor immunity against mammary tumors and melanoma with low or no tumor PD-L1. However, adipocyte PD-L1 ablation in tumor-free mice also exacerbates diet-induced body weight gain, pro-inflammatory macrophage infiltration into adipose tissue, and insulin resistance. Low PD-L1 mRNA levels in human adipose tissue correlate with high body mass index and presence of type 2 diabetes. Therefore, our mouse genetic approach unequivocally demonstrates a cell-autonomous function of adipocyte PD-L1 in promoting tumor growth and inhibiting antitumor immunity. In addition, our work uncovers a previously unrecognized role of adipocyte PD-L1 in mitigating obesity-related inflammation and metabolic dysfunction
BRCA1-associated R-loop affects transcription and differentiation in breast luminal epithelial cells
Ā© 2019 The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. BRCA1-associated basal-like breast cancer originates from luminal progenitor cells. Breast epithelial cells from cancer-free BRCA1 mutation carriers are defective in luminal differentiation. However, how BRCA1 deficiency leads to lineage-specific differentiation defect is not clear. BRCA1 is implicated in resolving R-loops, DNA-RNA hybrid structures associated with genome instability and transcriptional regulation. We recently showed that R-loops are preferentially accumulated in breast luminal epithelial cells of BRCA1 mutation carriers. Here, we interrogate the impact of a BRCA1 mutation-associated R-loop located in a putative transcriptional enhancer upstream of the ERĪ±-encoding ESR1 gene. Genetic ablation confirms the relevance of this R-loop-containing region to enhancer-promoter interactions and transcriptional activation of the corresponding neighboring genes, including ESR1, CCDC170 and RMND1. BRCA1 knockdown in ERĪ±+ luminal breast cancer cells increases intensity of this R-loop and reduces transcription of its neighboring genes. The deleterious effect of BRCA1 depletion on transcription is mitigated by ectopic expression of R-loop-removing RNase H1. Furthermore, RNase H1 overexpression in primary breast cells from BRCA1 mutation carriers results in a shift from luminal progenitor cells to mature luminal cells. Our findings suggest that BRCA1-dependent R-loop mitigation contributes to luminal cell-specific transcription and differentiation, which could in turn suppress BRCA1-associated tumorigenesis