221 research outputs found

    Neutron Energy Spectrum Measurements with a Compact Liquid Scintillation Detector on EAST

    Full text link
    A neutron detector based on EJ301 liquid scintillator has been employed at EAST to measure the neutron energy spectrum for D-D fusion plasma. The detector was carefully characterized in different quasi-monoenergetic neutron fields generated by a 4.5 MV Van de Graaff accelerator. In recent experimental campaigns, due to the low neutron yield at EAST, a new shielding device was designed and located as close as possible to the tokamak to enhance the count rate of the spectrometer. The fluence of neutrons and gamma-rays was measured with the liquid neutron spectrometer and was consistent with 3He proportional counter and NaI (Tl) gamma-ray spectrometer measurements. Plasma ion temperature values were deduced from the neutron spectrum in discharges with lower hybrid wave injection and ion cyclotron resonance heating. Scattered neutron spectra were simulated by the Monte Carlo transport Code, and they were well verified by the pulse height measurements at low energies.Comment: 19 pages,10 figures, 1 tabl

    A combined methodology for reconstructing source-to-sink basin evolution, exemplified by the Triassic Songpan–Ganzi basin, central China

    Get PDF
    Source-to-sink evolution of a basin is a key to understand sedimentary processes, especially in a complex regional orogenic setting. Detrital zircon populations can be traced from their primary sources to their depositional settings. The resulting interpretations are enhanced by calculation of the adjacent orogen's paleoaltimetry, which provides additional insights into paleogeography. In this study, we present a combined methodology which aims to reconstruct source-to-sink evolution by the analysis of detrital zircon age distribution in sandstones, together with the calculation of paleo-elevation of surrounding orogens based on the chemical compositions of coeval magmatic rocks. We test the method using detrital zircon U–Pb geochronological data sets from the Triassic Songpan–Ganzi basin in central China, combined with whole-rock geochemical data from intermediate-composition magmatic rocks in adjacent crustal blocks. Application of the combined methodology supports a syn-collisional basin model for the formation of the Triassic Songpan-Ganzi basin in preference to a continental back-arc basin. The clastic sediments, mainly deep-marine turbidites, accumulated in a remnant Paleotethyan Ocean that was surrounded by the converging North China Block, South China Block, East Kunlun Orogenic Belt and the Qiangtang Block. The North China Block and the North Qaidam Block were major proto-sources of detrital zircons to the basin, contributing on average 12 % and 15 %, respectively. Triassic magmatic rocks in the East Kunlun and Qiangtang regions were major sources of igneous zircons, up to 68 % for the former and up to 56 % for the latter. Despite being located at a calculated elevation of ca. 4000 m, the Qinling Orogenic Belt contributed only ca. <10 % of the zircons, mostly restricted to the eastern depocenter of the basin. In contrast, supply from the North Qiangtang Block, despite its calculated lower elevation (1000–3000 m), accounts for 2–10 % of the detrital zircons in the basin, suggesting high erosion rates of this block. The minimal supply of zircons from the South China Block, restricted to 3–6 % in the central and western depocenters, is inconsistent with the zircon abundances predicted in the alternative back-arc basin model of the Songpan–Ganzi basin

    Doping and temperature dependence of electron spectrum and quasiparticle dispersion in doped bilayer cuprates

    Get PDF
    Within the t-t'-J model, the electron spectrum and quasiparticle dispersion in doped bilayer cuprates in the normal state are discussed by considering the bilayer interaction. It is shown that the bilayer interaction splits the electron spectrum of doped bilayer cuprates into the bonding and antibonding components around the (π,0)(\pi,0) point. The differentiation between the bonding and antibonding components is essential, which leads to two main flat bands around the (π,0)(\pi,0) point below the Fermi energy. In analogy to the doped single layer cuprates, the lowest energy states in doped bilayer cuprates are located at the (π/2,π/2)(\pi/2,\pi/2) point. Our results also show that the striking behavior of the electronic structure in doped bilayer cuprates is intriguingly related to the bilayer interaction together with strong coupling between the electron quasiparticles and collective magnetic excitations.Comment: 9 pages, 4 figures, updated references, added figures and discussions, accepted for publication in Phys. Rev.

    Virulence of H5N1 virus in mice attenuates after in vitro serial passages

    Get PDF
    The virulence of A/Vietnam/1194/2004 (VN1194) in mice attenuated after serial passages in MDCK cells and chicken embryos, because the enriched large-plaque variants of the virus had significantly reduced virulence. In contrast, the small-plaque variants of the virus and the variants isolated from the brain of mice that were infected with the parental virus VN1194 had much higher virulence in mice. The virulence attenuation of serially propagated virus may be caused by the reduced neurotropism in mice. Our whole genome sequence analysis revealed substitutions of a total of two amino acids in PB1, three in PB2, two in PA common for virulence attenuated variants, all or part of which may be correlated with the virulence attenuation and reduced neurotropism of the serially propagated VN1194 in mice. Our study indicates that serial passages of VN1194 in vitro lead to adaptation and selection of variants that have markedly decreased virulence and neurotropism, which emphasizes the importance of direct analysis of original or less propagated virus samples

    Revisiting Image Aesthetic Assessment via Self-Supervised Feature Learning

    Full text link
    Visual aesthetic assessment has been an active research field for decades. Although latest methods have achieved promising performance on benchmark datasets, they typically rely on a large number of manual annotations including both aesthetic labels and related image attributes. In this paper, we revisit the problem of image aesthetic assessment from the self-supervised feature learning perspective. Our motivation is that a suitable feature representation for image aesthetic assessment should be able to distinguish different expert-designed image manipulations, which have close relationships with negative aesthetic effects. To this end, we design two novel pretext tasks to identify the types and parameters of editing operations applied to synthetic instances. The features from our pretext tasks are then adapted for a one-layer linear classifier to evaluate the performance in terms of binary aesthetic classification. We conduct extensive quantitative experiments on three benchmark datasets and demonstrate that our approach can faithfully extract aesthetics-aware features and outperform alternative pretext schemes. Moreover, we achieve comparable results to state-of-the-art supervised methods that use 10 million labels from ImageNet.Comment: AAAI Conference on Artificial Intelligence, 2020, accepte

    Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    Get PDF
    In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0.30%, and 0.35%. When the effect of length is researched, different lengths of basalt fibers with 4 mm, 8 mm, 12 mm, and 15 mm are put into soil at the same content of 0.05%. Experimental results show that basalt fiber can effectively improve the UCS of clay soil. And the best content and length are 0.25% and 12 mm, respectively. The results also show that the basalt fiber reinforced clay soil has the “poststrong” characteristic. About the reinforcement mechanism, the fiber and soil column-net model is proposed in this paper. Based on this model and SEM images, the effect of fiber content and length is related to the change of fiber-soil column and formation of effective fiber-soil net

    Development of an ELISA-array for simultaneous detection of five encephalitis viruses

    Get PDF
    Japanese encephalitis virus(JEV), tick-borne encephalitis virus(TBEV), and eastern equine encephalitis virus (EEEV) can cause symptoms of encephalitis. Establishment of accurate and easy methods by which to detect these viruses is essential for the prevention and treatment of associated infectious diseases. Currently, there are still no multiple antigen detection methods available clinically. An ELISA-array, which detects multiple antigens, is easy to handle, and inexpensive, has enormous potential in pathogen detection. An ELISA-array method for the simultaneous detection of five encephalitis viruses was developed in this study. Seven monoclonal antibodies against five encephalitis-associated viruses were prepared and used for development of the ELISA-array. The ELISA-array assay is based on a "sandwich" ELISA format and consists of viral antibodies printed directly on 96-well microtiter plates, allowing for direct detection of 5 viruses. The developed ELISA-array proved to have similar specificity and higher sensitivity compared with the conventional ELISAs. This method was validated by different viral cultures and three chicken eggs inoculated with infected patient serum. The results demonstrated that the developed ELISA-array is sensitive and easy to use, which would have potential for clinical use
    • …
    corecore