1,516 research outputs found

    Multidimensional Tensor-Based Inductive Thermography With Multiple Physical Fields for Offshore Wind Turbine Gear Inspection

    Get PDF
    Condition monitoring (CM), fault diagnosis (FD), and nondestructive testing (NDT) are currently considered crucial means to increase the reliability and availability of wind turbines. Many research works have focused on CM and FD for different components of wind turbine. Gear is typically used in a wind turbine. There is insufficient space to locate the sensors for long-term monitoring of fatigue state of gear, thus, offline inspection using NDT in both manufacturing and maintenance processes are critically important. This paper proposes an inductive thermography method for gear inspection. The ability to track the properties variation in gear such as electrical conductivity, magnetic permeability, and thermal conductivity has promising potential for the evaluation of material state undertaken by contact fatigue. Conventional thermography characterization methods are built based on single physical field analysis such as heat conduction or in-plane eddy current field. This study develops a physics-based multidimensional spatial-transient-stage tensor model to describe the thermo optical flow pattern for evaluating the contact fatigue damage. A helical gear with different cycles of contact fatigue tests was investigated and the proposed method was verified. It indicates that the proposed methods are effective tool for gear inspection and fatigue evaluation, which is important for early warning and condition-based maintenance

    Developments of a 2D Position Sensitive Neutron Detector

    Full text link
    Chinese Spallation Neutron Source (CSNS), one project of the 12th five-year-plan scheme of China, is under construction in Guangdong province. Three neutron spectrometers will be installed at the first phase of the project, where two-dimensional position sensitive thermal neutron detectors are required. Before the construction of the neutron detector, a prototype of two-dimensional 200 mmx200 mm Multi-wire Proportional Chamber (MWPC) with the flowing gas of Ar/CO2 (90/10) has been constructed and tested with the 55Fe X-Ray using part of the electronics in 2009, which showed a good performance. Following the test in 2009, the neutron detector has been constructed with the complete electronics and filled with the 6atm.3He + 2.5atm.C3H8 gas mixture in 2010. The neutron detector has been primarily tested with an Am/Be source. In this paper, some new developments of the neutron detector including the design of the high pressure chamber, the optimization of the gas purifying system and the gas filling process will be reported. The results and discussion are also presented in this paper.Comment: 5 page

    Expression of Endoplasmic Reticulum Stress-Related Factors in the Retinas of Diabetic Rats

    Get PDF
    Recent reports show that ER stress plays an important role in diabetic retinopathy (DR), but ER stress is a complicated process involving a network of signaling pathways and hundreds of factors, What factors involved in DR are not yet understood. We selected 89 ER stress factors from more than 200, A rat diabetes model was established by intraperitoneal injection of streptozotocin (STZ). The expression of 89 ER stress-related factors was found in the retinas of diabetic rats, at both 1- and 3-months after development of diabetes, by quantitative real-time polymerase chain reaction arrays. There were significant changes in expression levels of 13 and 12 ER stress-related factors in the diabetic rat retinas in the first and third month after the development of diabetes, Based on the array results, homocysteine- inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1(HERP), and synoviolin(HRD1) were studied further by immunofluorescence and Western blot. Immunofluorescence and Western blot analyses showed that the expression of HERP was reduced in the retinas of diabetic rats in first and third month. The expression of Hrd1 did not change significantly in the retinas of diabetic rats in the first month but was reduced in the third month

    Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli

    Get PDF
    Understanding the mechanism of nanosilver-dependent antibacterial activity against microorganisms helps optimize the design and usage of the related nanomaterials. In this study, we prepared four kinds of 10 nm-sized silver nanoparticles (AgNPs) with dictated surface chemistry by capping different ligands, including citrate, mercaptopropionic acid, mercaptohexanoic acid, and mercaptopropionic sulfonic acid. Their surface-dependent chemistry and antibacterial activities were investigated. Owing to the weak bond to surface Ag, short carbon chain, and low silver ion attraction, citrate-coated AgNPs caused the highest silver ion release and the strongest antibacterial activity against Escherichia coli, when compared to the other tested AgNPs. The study on the underlying antibacterial mechanisms indicated that cellular membrane uptake of Ag, NAD+/NADH ratio increase, and intracellular reactive oxygen species (ROS) generation were significantly induced in both AgNP and silver ion exposure groups. The released silver ions from AgNPs inside cells through a Trojan-horse-type mechanism were suggested to interact with respiratory chain proteins on the membrane, interrupt intracellular O2 reduction, and induce ROS production. The further oxidative damages of lipid peroxidation and membrane breakdown caused the lethal effect on E. coli. Altogether, this study demonstrated that AgNPs exerted antibacterial activity through the release of silver ions and the subsequent induction of intracellular ROS generation by interacting with the cell membrane. The findings are helpful in guiding the controllable synthesis through the regulation of surface coating for medical care purpose
    corecore