21 research outputs found

    Simultaneous profiling of transcriptome and DNA methylome from a single cell.

    Get PDF
    BackgroundSingle-cell transcriptome and single-cell methylome technologies have become powerful tools to study RNA and DNA methylation profiles of single cells at a genome-wide scale. A major challenge has been to understand the direct correlation of DNA methylation and gene expression within single-cells. Due to large cell-to-cell variability and the lack of direct measurements of transcriptome and methylome of the same cell, the association is still unclear.ResultsHere, we describe a novel method (scMT-seq) that simultaneously profiles both DNA methylome and transcriptome from the same cell. In sensory neurons, we consistently identify transcriptome and methylome heterogeneity among single cells but the majority of the expression variance is not explained by proximal promoter methylation, with the exception of genes that do not contain CpG islands. By contrast, gene body methylation is positively associated with gene expression for only those genes that contain a CpG island promoter. Furthermore, using single nucleotide polymorphism patterns from our hybrid mouse model, we also find positive correlation of allelic gene body methylation with allelic expression.ConclusionsOur method can be used to detect transcriptome, methylome, and single nucleotide polymorphism information within single cells to dissect the mechanisms of epigenetic gene regulation

    Noncoding transcripts are linked to brain resting-state activity in non-human primates

    No full text
    Summary: Brain-derived transcriptomes are known to correlate with resting-state brain activity in humans. Whether this association holds in nonhuman primates remains uncertain. Here, we search for such molecular correlates by integrating 757 transcriptomes derived from 100 macaque cortical regions with resting-state activity in separate conspecifics. We observe that 150 noncoding genes explain variations in resting-state activity at a comparable level with protein-coding genes. In-depth analysis of these noncoding genes reveals that they are connected to the function of nonneuronal cells such as oligodendrocytes. Co-expression network analysis finds that the modules of noncoding genes are linked to both autism and schizophrenia risk genes. Moreover, genes associated with resting-state noncoding genes are highly enriched in human resting-state functional genes and memory-effect genes, and their links with resting-state functional magnetic resonance imaging (fMRI) signals are altered in the brains of patients with autism. Our results highlight the potential for noncoding RNAs to explain resting-state activity in the nonhuman primate brain

    Chemical-induced phase transition and global conformational reorganization of chromatin

    No full text
    Abstract Chemicals or drugs can accumulate within biomolecular condensates formed through phase separation in cells. Here, we use super-resolution imaging to search for chemicals that induce phase transition within chromatin at the microscale. This microscopic screening approach reveals that adriamycin (doxorubicin) — a widely used anticancer drug that is known to interact with chromatin — specifically induces visible local condensation and global conformational change of chromatin in cancer and primary cells. Hi-C and ATAC-seq experiments systematically and quantitatively demonstrate that adriamycin-induced chromatin condensation is accompanied by weakened chromatin interaction within topologically associated domains, compartment A/B switching, lower chromatin accessibility, and corresponding transcriptomic changes. Mechanistically, adriamycin complexes with histone H1 and induces phase transition of H1, forming fibrous aggregates in vitro. These results reveal a phase separation-driven mechanism for a chemotherapeutic drug

    Selective demethylation and altered gene expression are associated with ICF syndrome in human-induced pluripotent stem cells and mesenchymal stem cells.

    No full text
    Immunodeficiency, centromeric instability and facial anomalies type I (ICF1) syndrome is a rare genetic disease caused by mutations in DNA methyltransferase (DNMT) 3B, a de novo DNA methyltransferase. However, the molecular basis of how DNMT3B deficiency leads to ICF1 pathogenesis is unclear. Induced pluripotent stem cell (iPSC) technology facilitates the study of early human developmental diseases via facile in vitro paradigms. Here, we generate iPSCs from ICF Type 1 syndrome patient fibroblasts followed by directed differentiation of ICF1-iPSCs to mesenchymal stem cells (MSCs). By performing genome-scale bisulfite sequencing, we find that DNMT3B-deficient iPSCs exhibit global loss of non-CG methylation and select CG hypomethylation at gene promoters and enhancers. Further unbiased scanning of ICF1-iPSC methylomes also identifies large megabase regions of CG hypomethylation typically localized in centromeric and subtelomeric regions. RNA sequencing of ICF1 and control iPSCs reveals abnormal gene expression in ICF1-iPSCs relevant to ICF syndrome phenotypes, some directly associated with promoter or enhancer hypomethylation. Upon differentiation of ICF1 iPSCs to MSCs, we find virtually all CG hypomethylated regions remained hypomethylated when compared with either wild-type iPSC-derived MSCs or primary bone-marrow MSCs. Collectively, our results show specific methylome and transcriptome defects in both ICF1-iPSCs and differentiated somatic cell lineages, providing a valuable stem cell system for further in vitro study of the molecular pathogenesis of ICF1 syndrome. GEO accession number: GSE46030

    Integrated Analysis of DNA Methylation and RNA Transcriptome during <i>In Vitro</i> Differentiation of Human Pluripotent Stem Cells into Retinal Pigment Epithelial Cells

    No full text
    <div><p>Using the paradigm of <i>in vitro</i> differentiation of hESCs/iPSCs into retinal pigment epithelial (RPE) cells, we have recently profiled mRNA and miRNA transcriptomes to define a set of RPE mRNA and miRNA signature genes implicated in directed RPE differentiation. In this study, in order to understand the role of DNA methylation in RPE differentiation, we profiled genome-scale DNA methylation patterns using the method of reduced representation bisulfite sequencing (RRBS). We found dynamic waves of <i>de novo</i> methylation and demethylation in four stages of RPE differentiation. Integrated analysis of DNA methylation and RPE transcriptomes revealed a reverse-correlation between levels of DNA methylation and expression of a subset of miRNA and mRNA genes that are important for RPE differentiation and function. Gene Ontology (GO) analysis suggested that genes undergoing dynamic methylation changes were related to RPE differentiation and maturation. We further compared methylation patterns among human ESC- and iPSC-derived RPE as well as primary fetal RPE (fRPE) cells, and discovered that specific DNA methylation pattern is useful to classify each of the three types of RPE cells. Our results demonstrate that DNA methylation may serve as biomarkers to characterize the cell differentiation process during the conversion of human pluripotent stem cells into functional RPE cells.</p></div

    The correlation of gene expression and DNA methylation in hESC-/hiPSC-RPEs and fRPEs.

    No full text
    <p>(A) Scatterplots of gene expression fold change vs DNA methylation change in hESC- and hiPSC- RPEs vs. fRPEs. The correlation coefficients were −0.306 (p-value = 0.051) and −0.288 (p-value = 0.067), respectively. (B) Gene expression heatmap analysis of selected genes that are methylated in H9 ESC-RPE, but not in fetal RPE.</p

    Analysis of differentially methylated genes during RPE differentiation from human H9 ESCs.

    No full text
    <p>(A) Heatmap analysis of promoter methylation of differentially methylated genes during RPE differentiation. ESC is undifferentiated H9 hESCs, PD: partial differentiated H9 cells, PC: pigmented cluster. RPE: H9 ESC-RPE. (B, C, D) GO analysis of differentially methylated genes during RPE differentiation. Bar graphs showing significance of enrichment terms for sets of demethylated genes from PD into PC cells (B, as indicated by the two blue boxes in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0091416#pone-0091416-g002" target="_blank">figure 2A</a>) and during the course of RPE maturation from PC to RPE (C, the yellow box in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0091416#pone-0091416-g002" target="_blank">figure 2A</a>), and remethylated genes in mature RPE (D, the two light blue boxes in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0091416#pone-0091416-g002" target="_blank">figure 2A</a>) as listed in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0091416#pone.0091416.s007" target="_blank">Table S2</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0091416#pone.0091416.s008" target="_blank">S3</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0091416#pone.0091416.s009" target="_blank">S4</a>. P-values<0.05.</p
    corecore