105,491 research outputs found

    Cosmological Information from Lensed CMB Power Spectra

    Full text link
    Gravitational lensing distorts the cosmic microwave background (CMB) temperature and polarization fields and encodes valuable information on distances and growth rates at intermediate redshifts into the lensed power spectra. The non-Gaussian bandpower covariance induced by the lenses is negligible to l=2000 for all but the B polarization field where it increases the net variance by up to a factor of 10 and favors an observing strategy with 3 times more area than if it were Gaussian. To quantify the cosmological information, we introduce two lensing observables, characterizing nearly all of the information, which simplify the study of non-Gaussian impact, parameter degeneracies, dark energy models, and complementarity with other cosmological probes. Information on the intermediate redshift parameters rapidly becomes limited by constraints on the cold dark matter density and initial amplitude of fluctuations as observations improve. Extraction of this information requires deep polarization measurements on only 5-10% of the sky, and can improve Planck lensing constraints by a factor of ~2-3 on any one of the parameters w_0, w_a, Omega_K, sum(m_nu) with the others fixed. Sensitivity to the curvature and neutrino mass are the highest due to the high redshift weight of CMB lensing but degeneracies between the parameters must be broken externally.Comment: 19 pages, 16 figures, submitted to PR

    Periodic subvarieties of a projective variety under the action of a maximal rank abelian group of positive entropy

    No full text
    We determine positive-dimensional G-periodic proper subvarieties of an n-dimensional normal projective variety X under the action of an abelian group G of maximal rank n-1 and of positive entropy. The motivation of the paper is to understand the obstruction for X to be G-equivariant birational to the quotient variety of an abelian variety modulo the action of a finite group.Comment: Asian Journal of Mathematics (to appear), Special issue on the occasion of Prof N. Mok's 60th birthda

    Empirical analysis of the ship-transport network of China

    Full text link
    Structural properties of the ship-transport network of China (STNC) are studied in the light of recent investigations of complex networks. STNC is composed of a set of routes and ports located along the sea or river. Network properties including the degree distribution, degree correlations, clustering, shortest path length, centrality and betweenness are studied in different definition of network topology. It is found that geographical constraint plays an important role in the network topology of STNC. We also study the traffic flow of STNC based on the weighted network representation, and demonstrate the weight distribution can be described by power law or exponential function depending on the assumed definition of network topology. Other features related to STNC are also investigated.Comment: 20 pages, 7 figures, 1 tabl

    Controllable magnetic correlation between two impurities by spin-orbit coupling in graphene

    Get PDF
    Two magnetic impurities on the edge of a zigzag graphene nanoribbon strongly interact with each other via indirect coupling, which can be mediated by conducting carriers. By means of Quantum Monte Carlo (QMC) simulations, we find that the spin-orbit coupling λ\lambda and the chemical potential μ\mu in system can be used to drive the transition of local-spin exchange from ferromagnetism to anti-ferromagnetism. Since the tunable ranges for λ\lambda and μ\mu in graphene are experimentally reachable, we thus open the possibilities for its device application. The symmetry in spatial distribution is broken by the vertical and the transversal spin-spin correlations due to the effect of spin-orbit coupling, leading to the spatial anisotropy of spin exchange, which distinguish our findings from the case in normal Fermi liquid.Comment: 7 pages, 3 figures and 1 table. This paper has been accepted in Scientific Report

    Tungsten fibre reinforced Zr-based bulk metallic glass composites

    Get PDF
    A Zr-based bulk metallic glass (BMG) alloy with the composition (Zr55Al10Ni5Cu30)98.5Si1.5 was used as the base material to form BMG composites. Tungsten fiber reinforced BMG composites were successfully fabricated by pressure metal infiltration technique, with the volume fraction of the tungsten fiber ranging from 10% to 70%. Microstructure and mechanical properties of the BMG composites were investigated. Tungsten reinforcement significantly increased the material’s ductility by changing the compressive failure mode from single shear band propagation to multiple shear bands propagation, and transferring stress from matrix to tungsten fibers
    • …
    corecore