105,491 research outputs found
Cosmological Information from Lensed CMB Power Spectra
Gravitational lensing distorts the cosmic microwave background (CMB)
temperature and polarization fields and encodes valuable information on
distances and growth rates at intermediate redshifts into the lensed power
spectra. The non-Gaussian bandpower covariance induced by the lenses is
negligible to l=2000 for all but the B polarization field where it increases
the net variance by up to a factor of 10 and favors an observing strategy with
3 times more area than if it were Gaussian. To quantify the cosmological
information, we introduce two lensing observables, characterizing nearly all of
the information, which simplify the study of non-Gaussian impact, parameter
degeneracies, dark energy models, and complementarity with other cosmological
probes. Information on the intermediate redshift parameters rapidly becomes
limited by constraints on the cold dark matter density and initial amplitude of
fluctuations as observations improve. Extraction of this information requires
deep polarization measurements on only 5-10% of the sky, and can improve Planck
lensing constraints by a factor of ~2-3 on any one of the parameters w_0, w_a,
Omega_K, sum(m_nu) with the others fixed. Sensitivity to the curvature and
neutrino mass are the highest due to the high redshift weight of CMB lensing
but degeneracies between the parameters must be broken externally.Comment: 19 pages, 16 figures, submitted to PR
Periodic subvarieties of a projective variety under the action of a maximal rank abelian group of positive entropy
We determine positive-dimensional G-periodic proper subvarieties of an
n-dimensional normal projective variety X under the action of an abelian group
G of maximal rank n-1 and of positive entropy. The motivation of the paper is
to understand the obstruction for X to be G-equivariant birational to the
quotient variety of an abelian variety modulo the action of a finite group.Comment: Asian Journal of Mathematics (to appear), Special issue on the
occasion of Prof N. Mok's 60th birthda
Empirical analysis of the ship-transport network of China
Structural properties of the ship-transport network of China (STNC) are
studied in the light of recent investigations of complex networks. STNC is
composed of a set of routes and ports located along the sea or river. Network
properties including the degree distribution, degree correlations, clustering,
shortest path length, centrality and betweenness are studied in different
definition of network topology. It is found that geographical constraint plays
an important role in the network topology of STNC. We also study the traffic
flow of STNC based on the weighted network representation, and demonstrate the
weight distribution can be described by power law or exponential function
depending on the assumed definition of network topology. Other features related
to STNC are also investigated.Comment: 20 pages, 7 figures, 1 tabl
Controllable magnetic correlation between two impurities by spin-orbit coupling in graphene
Two magnetic impurities on the edge of a zigzag graphene nanoribbon strongly
interact with each other via indirect coupling, which can be mediated by
conducting carriers. By means of Quantum Monte Carlo (QMC) simulations, we find
that the spin-orbit coupling and the chemical potential in
system can be used to drive the transition of local-spin exchange from
ferromagnetism to anti-ferromagnetism. Since the tunable ranges for
and in graphene are experimentally reachable, we thus open the
possibilities for its device application. The symmetry in spatial distribution
is broken by the vertical and the transversal spin-spin correlations due to the
effect of spin-orbit coupling, leading to the spatial anisotropy of spin
exchange, which distinguish our findings from the case in normal Fermi liquid.Comment: 7 pages, 3 figures and 1 table. This paper has been accepted in
Scientific Report
Tungsten fibre reinforced Zr-based bulk metallic glass composites
A Zr-based bulk metallic glass (BMG) alloy with the composition (Zr55Al10Ni5Cu30)98.5Si1.5 was used as the base material to form BMG composites. Tungsten fiber reinforced BMG composites were successfully fabricated by pressure metal infiltration technique, with the volume fraction of the tungsten fiber ranging from 10% to 70%. Microstructure and mechanical properties of the BMG composites were investigated. Tungsten reinforcement significantly increased the material’s ductility by changing the compressive failure mode from single shear band propagation to multiple shear bands propagation, and transferring stress from matrix to tungsten fibers
- …