3,932 research outputs found
Analytical Studies on a Modified Nagel-Schreckenberg Model with the Fukui-Ishibashi Acceleration Rule
We propose and study a one-dimensional traffic flow cellular automaton model
of high-speed vehicles with the Fukui-Ishibashi-type (FI) acceleration rule for
all cars, and the Nagel-Schreckenberg-type (NS) stochastic delay mechanism. By
using the car-oriented mean field theory, we obtain analytically the
fundamental diagrams of the average speed and vehicle flux depending on the
vehicle density and stochastic delay probability. Our theoretical results,
which may contribute to the exact analytical theory of the NS model, are in
excellent agreement with numerical simulations.Comment: 3 pages previous; now 4 pages 2 eps figure
Relation Structure-Aware Heterogeneous Information Network Embedding
Heterogeneous information network (HIN) embedding aims to embed multiple
types of nodes into a low-dimensional space. Although most existing HIN
embedding methods consider heterogeneous relations in HINs, they usually employ
one single model for all relations without distinction, which inevitably
restricts the capability of network embedding. In this paper, we take the
structural characteristics of heterogeneous relations into consideration and
propose a novel Relation structure-aware Heterogeneous Information Network
Embedding model (RHINE). By exploring the real-world networks with thorough
mathematical analysis, we present two structure-related measures which can
consistently distinguish heterogeneous relations into two categories:
Affiliation Relations (ARs) and Interaction Relations (IRs). To respect the
distinctive characteristics of relations, in our RHINE, we propose different
models specifically tailored to handle ARs and IRs, which can better capture
the structures and semantics of the networks. At last, we combine and optimize
these models in a unified and elegant manner. Extensive experiments on three
real-world datasets demonstrate that our model significantly outperforms the
state-of-the-art methods in various tasks, including node clustering, link
prediction, and node classification
RISE-Based Integrated Motion Control of Autonomous Ground Vehicles With Asymptotic Prescribed Performance
This article investigates the integrated lane-keeping and roll control for autonomous ground vehicles (AGVs) considering the transient performance and system disturbances. The robust integral of the sign of error (RISE) control strategy is proposed to achieve the lane-keeping control purpose with rollover prevention, by guaranteeing the asymptotic stability of the closed-loop system, attenuating systematic disturbances, and maintaining the controlled states within the prescribed performance boundaries. Three contributions have been made in this article: 1) a new prescribed performance function (PPF) that does not require accurate initial errors is proposed to guarantee the tracking errors restricted within the predefined asymptotic boundaries; 2) a modified neural network (NN) estimator which requires fewer adaptively updated parameters is proposed to approximate the unknown vertical dynamics; and 3) the improved RISE control based on PPF is proposed to achieve the integrated control objective, which analytically guarantees both the controller continuity and closed-loop system asymptotic stability by integrating the signum error function. The overall system stability is proved with the Lyapunov function. The controller effectiveness and robustness are finally verified by comparative simulations using two representative driving maneuvers, based on the high-fidelity CarSim-Simulink simulation
- …