3,340 research outputs found

    Dynamics of nucleic acid mobility

    Get PDF
    Advances in sequencing technologies and bioinformatic analyses are accelerating the quantity and quality of data from all domains of life. This rich resource has the potential to reveal a number of important incidences with respect to possible exchange of nucleic acids. Ancient events have impacted species evolution and adaptation to new ecological niches. However, we still lack a full picture of processes ongoing within and between somatic cells, gametes, and different organisms. We propose that events linked to acceptance of alien nucleic acids grossly could be divided into 2 main routes in plants: one, when plants are exposed to extreme challenges and, the second level, a more everyday or season-related stress incited by biotic or abiotic factors. Here, many events seem to comprise somatic cells. Are the transport and acceptance processes of alien sequences random or are there specific regulatory systems not yet fully understood? Following entrance into a new cell, a number of intracellular processes leading to chromosomal integration and function are required. Modification of nucleic acids and possibly exchange of sequences within a cell may also occur. Such fine-tune events are most likely very common. There are multiple questions that we will discuss concerning different types of vesicles and their roles in nucleic acid transport and possible intracellular sequence exchange between species

    Rapid Self-Assembly of Polymer Nanoparticles for Synergistic Codelivery of Paclitaxel and Lapatinib Via Flash Nanoprecipitation

    Get PDF
    Taxol, a formulation of paclitaxel (PTX), is one of the most widely used anticancer drugs, particularly for treating recurring ovarian carcinomas following surgery. Clinically, PTX is used in combination with other drugs such as lapatinib (LAP) to increase treatment efficacy. Delivering drug combinations with nanoparticles has the potential to improve chemotherapy outcomes. In this study, we use Flash NanoPrecipitation, a rapid, scalable process to encapsulate weakly hydrophobic drugs (logP \u3c 6) PTX and LAP into polymer nanoparticles with a coordination complex of tannic acid and iron formed during the mixing process. We determine the formulation parameters required to achieve uniform nanoparticles and evaluate the drug release in vitro. The size of the resulting nanoparticles was stable at pH 7.4, facilitating sustained drug release via first-order Fickian diffusion. Encapsulating either PTX or LAP into nanoparticles increases drug potency (as indicated by the decrease in IC-50 concentration); we observe a 1500-fold increase in PTX potency and a six-fold increase in LAP potency. When PTX and LAP are co-loaded in the same nanoparticle, they have a synergistic effect that is greater than treating with two single-drug-loaded nanoparticles as the combination index is 0.23 compared to 0.40, respectively

    Cultures of success : how elite students develop and realise aspirations to study medicine

    Get PDF
    Despite decades of policies to widen participation in medical degrees, students selected for Medicine continue to reflect a socially elite group, rather than the diversity of the communities that graduates will serve. While research has documented experiences of students from disadvantaged backgrounds, this paper examines the “cultures of success” that enable advantaged students to gain entry to medical school. It documents how these students’ school and home environments enable the development and realisation of “aspirational capacity”. Aspirational capacity is not just about having a dream, but also the resources and knowledge to realise one’s dream. The paper also examines a negative side of a narrow aspirational focus. “Aspirational constriction” describes the premature foreclosure of career ambitions, which can have negative implications for both the students and for society, and for less advantaged students, who are effectively excluded from degrees such as Medicine

    Simulation of Airbus-A320 fuselage surface pressure fluctuations at cruise conditions in "Aeroacoustics research in Europe: The CEAS-ASC report on 2019 highlights"

    Get PDF
    The fuselage surface pressure fluctuations on an Airbus-A320 aircraft at cruise conditions are simulated by solving a Poisson equation. The right-hand-side source terms of the Poisson equation, including both the mean-shear term and the turbulence-turbulence term, are realized with synthetic anisotropic turbulence generated by the Fast Random Particle-Mesh Method. The stochastic realization is based on time-averaged turbulence statistics derived from a RANS simulation under the same condition as in the flight tests, conducted with DLR's Airbus-A320 research aircraft. The fuselage surface pressure fluctuations are calculated at three streamwise positions from front to rear corresponding to the measurement positions in the flight tests. One- and two-point spectral features of the pressure fluctuations relevant to the fuselage surface excitation are obtained and analysed
    • …
    corecore