1,783 research outputs found

    Reconstruction of the primordial power spectra with Planck and BICEP2

    Get PDF
    By using the cubic spline interpolation method, we reconstruct the shape of the primordial scalar and tensor power spectra from the recently released {\it Planck} temperature and BICEP2 polarization cosmic microwave background data. We find that the vanishing scalar index running (\dd n_s/\dd\ln k) model is strongly disfavored at more than 3σ3\sigma confidence level on the k=0.0002k=0.0002 Mpc1^{-1} scale. Furthermore, the power-law parameterization gives a blue-tilt tensor spectrum, no matter using only the first 5 bandpowers nt=1.200.64+0.56(95n_t = 1.20^{+0.56}_{-0.64} (95% {\rm CL}) or the full 9 bandpowers nt=1.240.58+0.51(95n_t = 1.24^{+0.51}_{-0.58} (95% {\rm CL}) of BICEP2 data sets. Unlike the large tensor-to-scalar ratio value (r0.20r\sim0.20) under the scale-invariant tensor spectrum assumption, our interpolation approach gives r0.002<0.060(95CL)r_{0.002} < 0.060 (95% {\rm CL}) by using the first 5 bandpowers of BICEP2 data. After comparing the results with/without BICEP2 data, we find that {\it Planck} temperature with small tensor amplitude signals and BICEP2 polarization data with large tensor amplitude signals dominate the tensor spectrum reconstruction on the large and small scales, respectively. Hence, the resulting blue tensor tilt actually reflects the tension between {\it Planck} and BICEP2 data.Comment: complementary results without BICEP2 added, references add, typos corrected, 10 figures, 5 tables, 11 page

    Changes in Tropical Clouds and Atmospheric Circulation Associated with Rapid Adjustment Induced by Increased Atmospheric CO2 A Multiscale Modeling Framework Study

    Get PDF
    The radiative heating increase due to increased CO2 concentration is the primary source for the rapid adjustment of atmospheric circulation and clouds. In this study, we investigate the rapid adjustment resulting from doubling of CO2 and its physical mechanism using a multiscale modeling framework (MMF). The MMF includes an advanced higher-order turbulence closure in its cloud-resolving model component and simulates realistic shallow and deep cloud climatology and boundary layer turbulence. The rapid adjustment over the tropics is characterized by 1) reduced ascent and descent strengths over the ocean, 2) increased lower tropospheric stability (LTS) over the subsidence region, 3) shoaling of planetary boundary layers over the ocean, 4) increased deep convection over lands and shift of cloud coverage from the ocean to lands, and 5) reduced sensible (SH) and latent heat (LH) fluxes over the oceanic deep convective regions. Unlike conventional general circulation models and another MMF, a reduction in the global-mean shortwave cloud radiative cooling is not simulated, due to the increase in low clouds at lower altitudes over the ocean, resulting from reduced cloud-top entrainment due to strengthened inversion. Changes in regional circulation play a key role in cloud changes and shift of cloud coverage to lands. Weaker energy transport resulting from water vapor and cloud CO2 masking effects reduces the upward motion and convective clouds in the oceanic regions. The ocean-land transports are linked to the partitioning of surface SH and LH fluxes that increases humidity over lands and enhances deep convection over the tropical lands

    Non-Gaussian features from the inverse volume corrections in loop quantum cosmology

    Full text link
    In this paper we study the non-Gaussian features of the primordial fluctuations in loop quantum cosmology with the inverse volume corrections. The detailed analysis is performed in the single field slow-roll inflationary models. However, our results reflect the universal characteristics of bispectrum in loop quantum cosmology. The main corrections to the scalar bispectrum come from two aspects: one is the modifications to the standard Bunch-Davies vacuum, the other is the corrections to the background dependent variables, such as slow-roll parameters. Our calculations show that the loop quantum corrections make fNLf_{{\rm NL}} of the inflationary models increase 0.1%. Moreover, we find that two new shapes arise, namely F1\mathcal F_{1} and F2\mathcal F_{2}. The former gives a unique loop quantum feature which is less correlated with the local, equilateral and single types, while the latter is highly correlated with the local one.Comment: matched to the published version. 30 pages, 4 figure
    corecore