248 research outputs found

    Theoretical Investigations of Mechanisms for the Reactions of Seven-Member Ring N-Heterocyclic Carbene and Its Heavier Analogues

    Get PDF
    The potential energy surfaces for the chemical reactions of group 14 carbenes were studied using density functional theory (B3LYP/LANL2DZĀ +Ā dp). Five group 14 carbene species containing a seven-member ring, 7-Rea-E, where EĀ =Ā C, Si, Ge, Sn and Pb, were chosen as model reactants for this work. Three types of chemical reactions (water addition, imine cycloaddition and dimerization) were used to study the reactivity of these 7-Rea-E molecules. Present theoretical investigations suggest that the relative reactivity of carbenes decreases in the order: 7-Rea-CĀ >Ā 7-Rea-SiĀ >Ā 7-Rea-GeĀ >Ā 7-Rea-SnĀ >Ā 7-Rea-Pb. That is, the heavier the group 14 atom (E), the more stable its corresponding 7-Rea-E compound to chemical reaction. This studyā€™s theoretical findings suggest that all of the seven-member 7-Rea-E should be readily synthesized and isolated at room temperature, since they are quite inert to chemical reaction, except for reaction with moisture. Furthermore, the group 14 7-Rea-E singlet-triplet energy splitting, as described in the configuration-mixing model of Pross and Shaik, can be used as a diagnostic tool to predict their reactivity. The results obtained allow a number of predictions to be made

    Fine-grained Controllable Video Generation via Object Appearance and Context

    Full text link
    Text-to-video generation has shown promising results. However, by taking only natural languages as input, users often face difficulties in providing detailed information to precisely control the model's output. In this work, we propose fine-grained controllable video generation (FACTOR) to achieve detailed control. Specifically, FACTOR aims to control objects' appearances and context, including their location and category, in conjunction with the text prompt. To achieve detailed control, we propose a unified framework to jointly inject control signals into the existing text-to-video model. Our model consists of a joint encoder and adaptive cross-attention layers. By optimizing the encoder and the inserted layer, we adapt the model to generate videos that are aligned with both text prompts and fine-grained control. Compared to existing methods relying on dense control signals such as edge maps, we provide a more intuitive and user-friendly interface to allow object-level fine-grained control. Our method achieves controllability of object appearances without finetuning, which reduces the per-subject optimization efforts for the users. Extensive experiments on standard benchmark datasets and user-provided inputs validate that our model obtains a 70% improvement in controllability metrics over competitive baselines.Comment: Project page: https://hhsinping.github.io/facto

    Distinct functional defect of three novel Brugada syndrome related cardiac sodium channel mutations

    Get PDF
    The Brugada syndrome is characterized by ST segment elevation in the right precodial leads V1-V3 on surface ECG accompanied by episodes of ventricular fibrillation causing syncope or even sudden death. The molecular and cellular mechanisms that lead to Brugada syndrome are not yet completely understood. However, SCN5A is the most well known responsible gene that causes Brugada syndrome. Until now, more than a hundred mutations in SCN5A responsible for Brugada syndrome have been described. Functional studies of some of the mutations have been performed and show that a reduction of human cardiac sodium current accounts for the pathogenesis of Brugada syndrome. Here we reported three novel SCN5A mutations identified in patients with Brugada syndrome in Taiwan (p.I848fs, p.R965C, and p.1876insM). Their electrophysiological properties were altered by patch clamp analysis. The p.I848fs mutant generated no sodium current. The p.R965C and p.1876insM mutants produced channels with steady state inactivation shifted to a more negative potential (9.4 mV and 8.5 mV respectively), and slower recovery from inactivation. Besides, the steady state activation of p.1876insM was altered and was shifted to a more positive potential (7.69 mV). In conclusion, the SCN5A channel defect related to Brugada syndrome might be diverse but all resulted in a decrease of sodium current

    Humanized celiac-prone epithelium in vitro express MHC-II and co-stimulatory molecules necessary for gluten peptide presentation

    Get PDF
    Background: The role intestinal epithelial cells (IECs) play in the breakdown of tolerance to gluten at an early stage in celiac disease (CeD) is unclear. Epithelial stress is a feature of CeD, and although the triggers are largely unknown, it is accompanied by expression of several markers that could be involved in initiation of inflammatory responses. IECs have been shown to express MHC class II (MHC-II) molecules and participate in antigen presentation in several models. Whether IECs can participate in gluten peptide presentation, the major environmental trigger in celiac disease, is unknown. To study this, a model expressing human MHC-II, HLA DQ8 or HLADQ2, would be required. Aims: To develop organoid monolayers from transgenic mice expressing human celiac risk genes: HLA-DQ8 and -DQ2. To investigate conditions leading to the induction of epithelial MHC-II and its main co-stimulatory molecules, CD80, CD86 and CD40, that could enable early gluten peptide presentation.Instituto de Estudios InmunolĆ³gicos y FisiopatolĆ³gico

    Spinocerebellar ataxia type 8 larger triplet expansion alters histone modification and induces RNA foci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinocerebellar ataxia type 8 (SCA8) involves the expression of an expanded CTG/CAG combined repeats (CR) from opposite strands producing CUG expansion transcripts (ataxin 8 opposite strand, ATXN8OS) and a polyglutamine expansion protein (ataxin 8, ATXN8). The pathogenesis of SCA8 is complex and the spectrum of clinical presentations is broad.</p> <p>Results</p> <p>Using stably induced cell models expressing 0, 23, 88 and 157 CR, we study the role of ATXN8OS transcripts in SCA8 pathogenesis. In the absence of doxycycline, the stable ATXN8OS CR cell lines exhibit low levels of ATXN8OS expression and a repeat length-related increase in staurosporine sensitivity and in the number of annexin positive cells. A repeat length-dependent repression of ATXN8OS expression was also notable. Addition of doxycycline leads to 25~50 times more ATXN8OS RNA expression with a repeat length-dependent increase in fold of ATXN8OS RNA induction. ChIP-PCR assay using anti-dimethyl-histone H3-K9 and anti-acetyl-histone H3-K14 antibodies revealed increased H3-K9 dimethylation and reduced H3-K14 acetylation around the ATXN8OS cDNA gene in 157 CR line. The repeat length-dependent increase in induction fold is probably due to the increased RNA stability as demonstrated by monitoring ATXN8OS RNA decay in cells treated with the transcriptional inhibitor, actinomycin D. In cells stably expressing ATXN8OS, RNA FISH experiments further revealed ribonuclear foci formation in cells carrying expanded 88 and 157 CR.</p> <p>Conclusion</p> <p>The present study demonstrates that the expanded CUG-repeat tracts are toxic to human cells and may affect ATXN8OS RNA expression and stability through epigenetic and post-transcriptional mechanisms.</p

    Postchallenge responses of nitrotyrosine and TNF-alpha during 75-g oral glucose tolerance test are associated with the presence of coronary artery diseases in patients with prediabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meta-analysis has demonstrated an exponential relationship between 2-hr postchallenge hyperglycemia and coronary artery disease (CAD). Pulsatile hyperglycemia can acutely increase proinflammatory cytokines by oxidative stress. We hypothesized that postchallenge proinflammatory and nitrosative responses after 75 g oral glucose tolerance tests (75 g-OGTT) might be associated with CAD in patients without previously recognized type 2 diabetes mellitus (T2DM).</p> <p>Methods</p> <p>Serial changes of plasma glucose (PG), tumor necrosis factor-alpha (TNF-Ī±), interleukin-6 (IL-6) and nitrotyrosine levels were analyzed during 75 g-OGTT in 120 patients (81 male; age 62 Ā± 11 years) before coronary angiography. Patients were classified as normal (NGT; 42%), impaired (IGT; 34%) and diabetic (T2DM; 24%) glucose tolerance by 75 g-OGTT.</p> <p>Results</p> <p>Postchallenge hyperglycemia elicited TNF-Ī±, IL-6 and nitrotyrosine levels time-dependently, and 2-hr median levels of TNF-Ī± (7.1 versus 6.4 pg/ml; <it>P </it>< 0.05) and nitrotyrosine (1.01 versus 0.83 <it>Ī¼</it>mol/l; <it>P </it>< 0.05), but not IL-6 or PG, were significantly higher in patients with CAD in either IGT or T2DM groups. After adjusting risk factors and glucose tolerance status, 2-hr nitrotyrosine in highest quartiles (OR: 3.1, <it>P </it>< 0.05) remained an independent predictor of CAD by logistic regression analysis.</p> <p>Conclusions</p> <p>These results highlight postchallenge proinflammatory and nitrosative responses by 75 g-OGTT, rather than hyperglycemia <it>per se</it>, are associated with CAD in patients without previous recognized diabetes.</p
    • ā€¦
    corecore