1,371 research outputs found
Post-Apocalyptic Geographies and Structural Appropriation
Excerpt from Routledge Companion to Transnational American Studies, edited by Nina Morgan, Alfred Hornung, and Takayuki Tatsum
Spectral properties and magneto-optical excitations in semiconductor double-rings under Rashba spin-orbit interaction
We have numerically solved the Hamiltonian of an electron in a semiconductor
double ring subjected to the magnetic flux and Rashba spin-orbit interaction.
It is found that the Aharonov-Bohm energy spectrum reveals multi-zigzag
periodic structures. The investigations of spin-dependent electron dynamics via
Rabi oscillations in two-level and three-level systems demonstrate the
possibility of manipulating quantum states. Our results show that the optimal
control of photon-assisted inter-ring transitions can be achieved by employing
cascade-type and -type transition mechanisms. Under chirped pulse
impulsions, a robust and complete transfer of an electron to the final state is
shown to coincide with the estimation of the Landau-Zener formula.Comment: RevTex, 9 pages, 5 figure
Solutions of special asymptotics to the Einstein constraint equations
We construct solutions with prescribed asymptotics to the Einstein constraint
equations using a cut-off technique. Moreover, we give various examples of
vacuum asymptotically flat manifolds whose center of mass and angular momentum
are ill-defined.Comment: 13 pages; the error in Lemma 3.5 fixed and typos corrected; to appear
in Class. Quantum Gra
Probing neutrino mass hierarchies and with supernova neutrinos
We investigate the feasibility of probing the neutrino mass hierarchy and the
mixing angle with the neutrino burst from a future supernova. An
inverse power-law density with varying is adopted in the
analysis as the density profile of a typical core-collapse supernova. The
survival probabilities of and are shown to reduce to
two-dimensional functions of and . It is found that in the
parameter space, the 3D plots of the probability
functions exhibit highly non-trivial structures that are sensitive to the mass
hierarchy, the mixing angle , and the value of . The conditions
that lead to observable differences in the 3D plots are established. With the
uncertainty of considered, a qualitative analysis of the Earth matter
effect is also included.Comment: 16 pages, 3 figures. Ref [11] added, and some typos correcte
A direct reconstruction algorithm for the anisotropic inverse conductivity problem based on Calderon's method in the plane
A direct reconstruction algorithm based on Calderon's linearization method for the reconstruction of isotropic conductivities is proposed for anisotropic conductivities in two-dimensions. To overcome the non-uniqueness of the anisotropic inverse conductivity problem, the entries of the unperturbed anisotropic tensors are assumed known a priori, and it remains to reconstruct the multiplicative scalar field. The quasi-conformal map in the plane facilitates the Calderon-based approach for anisotropic conductivities. The method is demonstrated on discontinuous radially symmetric conductivities of high and low contrast.Peer reviewe
Fokker-Planck equation approach to optical bistability in the bad-cavity limit
In the general framework of the system size expansion of Van Kampen and Kubo, we consider the Fokker-Planck equation for a model of absorptive bistability in the bad-cavity limit. The physical system is described by the reduced atomic density operators after adiabatic elimination of the cavity field variables. Mapping of the master equation into c-number form according to the normal-ordering mapping scheme yields known results for the atomic fluctuations and correlation functions; however, it also leads to a Fokker-Planck equation with a non-positive-definite diffusion matrix. The symmetrical-order-mapping scheme eliminates this difficulty. The leading contribution to the system size expansion yields a Fokker-Planck equation for the symmetrical-ordered density function having a positive-definite diffusion matrix. The atomic expectation values and fluctuations previously derived from the quantum Langevin equations emerge naturally from this Fokker-Planck equation
CDP-diacylglycerol phospholipid synthesis in detergent-soluble, non-raft, membrane microdomains of the endoplasmic reticulum
Phosphatidylinositol (PI) is essential for numerous cell functions and is generated by consecutive reactions catalyzed by CDP-diacylglycerol synthase (CDS) and PI synthase. In this study, we investigated the membrane organization of CDP-diacylglycerol synthesis. Separation of mildly disrupted A431 cell membranes on sucrose density gradients revealed cofractionation of CDS and PI synthase activities with cholesterol-poor, endoplasmic reticulum (ER) membranes and partial overlap with plasma membrane caveolae. Cofractionation of CDS activity with caveolae was also observed when low-buoyant density caveolin-enriched membranes were prepared using a carbonate-based method. However, immunoisolation studies determined that CDS activity localized to ER membrane fragments containing calnexin and type III inositol (1,4,5)-trisphosphate receptors but not to caveolae. Membrane fragmentation in neutral pH buffer established that CDP-diacylglycerol and PI syntheses were restricted to a subfraction of the calnexin-positive ER. In contrast to lipid rafts enriched for caveolin, cholesterol, and GM1 glycosphingolipids, the CDS-containing ER membranes were detergent soluble. In cell imaging studies, CDS and calnexin colocalized in microdomain-sized patches of the ER and also unexpectedly at the plasma membrane. These results demonstrate that key components of the PI pathway localize to nonraft, phospholipid-synthesizing microdomains of the ER that are also enriched for calnexin. Copyright © 2011 by the American Society for Biochemistry and Molecular Biology, Inc
Quantum analysis of optical bistability and spectrum of fluctuations
We discuss the approach to equilibrium and the fluctuations of a bistable system under dynamical conditions such that the field variables can be eliminated adiabatically. The atomic system evolves under the action of the coherent pumping of an external field and of collective and incoherent relaxation processes. The competition between pumping and relaxation effects causes the atomic steady-state configurations to depend discontinuously on the strength of the driving field. We derive an explicit expression for the spectrum of the forward-scattered light, which exhibits hysteresis and a discontinuous dependence on the driving-field amplitude
- …