861 research outputs found

    Iteratively Estimating Pattern Reliability and Seed Quality With Extraction Consistency

    Get PDF

    Improving protein secondary structure prediction based on short subsequences with local structure similarity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When characterizing the structural topology of proteins, protein secondary structure (PSS) plays an important role in analyzing and modeling protein structures because it represents the local conformation of amino acids into regular structures. Although PSS prediction has been studied for decades, the prediction accuracy reaches a bottleneck at around 80%, and further improvement is very difficult.</p> <p>Results</p> <p>In this paper, we present an improved dictionary-based PSS prediction method called SymPred, and a meta-predictor called SymPsiPred. We adopt the concept behind natural language processing techniques and propose synonymous words to capture local sequence similarities in a group of similar proteins. A synonymous word is an <it>n-</it>gram pattern of amino acids that reflects the sequence variation in a protein’s evolution. We generate a protein-dependent synonymous dictionary from a set of protein sequences for PSS prediction.</p> <p>On a large non-redundant dataset of 8,297 protein chains (<it>DsspNr-25</it>), the average <it>Q</it><sub>3</sub> of SymPred and SymPsiPred are 81.0% and 83.9% respectively. On the two latest independent test sets (<it>EVA Set_1</it> and <it>EVA_Set2</it>), the average <it>Q</it><sub>3</sub> of SymPred is 78.8% and 79.2% respectively. SymPred outperforms other existing methods by 1.4% to 5.4%. We study two factors that may affect the performance of SymPred and find that it is very sensitive to the number of proteins of both known and unknown structures. This finding implies that SymPred and SymPsiPred have the potential to achieve higher accuracy as the number of protein sequences in the NCBInr and PDB databases increases.</p> <p>Conclusions</p> <p>Our experiment results show that local similarities in protein sequences typically exhibit conserved structures, which can be used to improve the accuracy of secondary structure prediction. For the application of synonymous words, we demonstrate an example of a sequence alignment which is generated by the distribution of shared synonymous words of a pair of protein sequences. We can align the two sequences nearly perfectly which are very dissimilar at the sequence level but very similar at the structural level. The SymPred and SymPsiPred prediction servers are available at <url>http://bio-cluster.iis.sinica.edu.tw/SymPred/</url>.</p

    MeInfoText 2.0: gene methylation and cancer relation extraction from biomedical literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA methylation is regarded as a potential biomarker in the diagnosis and treatment of cancer. The relations between aberrant gene methylation and cancer development have been identified by a number of recent scientific studies. In a previous work, we used co-occurrences to mine those associations and compiled the MeInfoText 1.0 database. To reduce the amount of manual curation and improve the accuracy of relation extraction, we have now developed MeInfoText 2.0, which uses a machine learning-based approach to extract gene methylation-cancer relations.</p> <p>Description</p> <p>Two maximum entropy models are trained to predict if aberrant gene methylation is related to any type of cancer mentioned in the literature. After evaluation based on 10-fold cross-validation, the average precision/recall rates of the two models are 94.7/90.1 and 91.8/90% respectively. MeInfoText 2.0 provides the gene methylation profiles of different types of human cancer. The extracted relations with maximum probability, evidence sentences, and specific gene information are also retrievable. The database is available at <url>http://bws.iis.sinica.edu.tw:8081/MeInfoText2/</url>.</p> <p>Conclusion</p> <p>The previous version, MeInfoText, was developed by using association rules, whereas MeInfoText 2.0 is based on a new framework that combines machine learning, dictionary lookup and pattern matching for epigenetics information extraction. The results of experiments show that MeInfoText 2.0 outperforms existing tools in many respects. To the best of our knowledge, this is the first study that uses a hybrid approach to extract gene methylation-cancer relations. It is also the first attempt to develop a gene methylation and cancer relation corpus.</p

    SENTIMENT ANALYSIS OF CHINESE MICROBLOG MESSAGE USING NEURAL NETWORK-BASED VECTOR REPRESENTATION FOR MEASURING REGIONAL PREJUDICE

    Get PDF
    Regional prejudice is prevalent in Chinese cities in which native residents and migrants lack a basic level of trust in the other group. Like Twitter, Sina Weibo is a social media platform where people actively engage in discussions on various social issues. Thus, it provides a good data source for measuring individuals’ regional prejudice on a large scale. We find that a resentful tone dominates in Weibo messages related to migrants. In this paper, we propose a novel approach, named DKV, for recognizing polarity and direction of sentiment for Weibo messages using distributed real-valued vector representation of keywords learned from neural networks. Such a representation can project rich context information (or embedding) into the vector space, and subsequently be used to infer similarity measures among words, sentences, and even documents. We provide a comprehensive performance evaluation to demonstrate that by exploiting the keyword embeddings, DKV paired with support vector machines can effectively recognize a Weibo message into the predefined sentiment and its direction. Results demonstrate that our method can achieve the best performances compared to other approaches

    Protein subcellular localization prediction of eukaryotes using a knowledge-based approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of protein subcellular localization (PSL) is important for elucidating protein functions involved in various cellular processes. However, determining the localization sites of a protein through wet-lab experiments can be time-consuming and labor-intensive. Thus, computational approaches become highly desirable. Most of the PSL prediction systems are established for single-localized proteins. However, a significant number of eukaryotic proteins are known to be localized into multiple subcellular organelles. Many studies have shown that proteins may simultaneously locate or move between different cellular compartments and be involved in different biological processes with different roles.</p> <p>Results</p> <p>In this study, we propose a knowledge based method, called KnowPred<sub>site</sub>, to predict the localization site(s) of both single-localized and multi-localized proteins. Based on the local similarity, we can identify the "related sequences" for prediction. We construct a knowledge base to record the possible sequence variations for protein sequences. When predicting the localization annotation of a query protein, we search against the knowledge base and used a scoring mechanism to determine the predicted sites. We downloaded the dataset from ngLOC, which consisted of ten distinct subcellular organelles from 1923 species, and performed ten-fold cross validation experiments to evaluate KnowPred<sub>site</sub>'s performance. The experiment results show that KnowPred<sub>site </sub>achieves higher prediction accuracy than ngLOC and Blast-hit method. For single-localized proteins, the overall accuracy of KnowPred<sub>site </sub>is 91.7%. For multi-localized proteins, the overall accuracy of KnowPred<sub>site </sub>is 72.1%, which is significantly higher than that of ngLOC by 12.4%. Notably, half of the proteins in the dataset that cannot find any Blast hit sequence above a specified threshold can still be correctly predicted by KnowPred<sub>site</sub>.</p> <p>Conclusion</p> <p>KnowPred<sub>site </sub>demonstrates the power of identifying related sequences in the knowledge base. The experiment results show that even though the sequence similarity is low, the local similarity is effective for prediction. Experiment results show that KnowPred<sub>site </sub>is a highly accurate prediction method for both single- and multi-localized proteins. It is worth-mentioning the prediction process of KnowPred<sub>site </sub>is transparent and biologically interpretable and it shows a set of template sequences to generate the prediction result. The KnowPred<sub>site </sub>prediction server is available at <url>http://bio-cluster.iis.sinica.edu.tw/kbloc/</url>.</p

    Protein subcellular localization prediction based on compartment-specific features and structure conservation

    Get PDF
    BACKGROUND: Protein subcellular localization is crucial for genome annotation, protein function prediction, and drug discovery. Determination of subcellular localization using experimental approaches is time-consuming; thus, computational approaches become highly desirable. Extensive studies of localization prediction have led to the development of several methods including composition-based and homology-based methods. However, their performance might be significantly degraded if homologous sequences are not detected. Moreover, methods that integrate various features could suffer from the problem of low coverage in high-throughput proteomic analyses due to the lack of information to characterize unknown proteins. RESULTS: We propose a hybrid prediction method for Gram-negative bacteria that combines a one-versus-one support vector machines (SVM) model and a structural homology approach. The SVM model comprises a number of binary classifiers, in which biological features derived from Gram-negative bacteria translocation pathways are incorporated. In the structural homology approach, we employ secondary structure alignment for structural similarity comparison and assign the known localization of the top-ranked protein as the predicted localization of a query protein. The hybrid method achieves overall accuracy of 93.7% and 93.2% using ten-fold cross-validation on the benchmark data sets. In the assessment of the evaluation data sets, our method also attains accurate prediction accuracy of 84.0%, especially when testing on sequences with a low level of homology to the training data. A three-way data split procedure is also incorporated to prevent overestimation of the predictive performance. In addition, we show that the prediction accuracy should be approximately 85% for non-redundant data sets of sequence identity less than 30%. CONCLUSION: Our results demonstrate that biological features derived from Gram-negative bacteria translocation pathways yield a significant improvement. The biological features are interpretable and can be applied in advanced analyses and experimental designs. Moreover, the overall accuracy of combining the structural homology approach is further improved, which suggests that structural conservation could be a useful indicator for inferring localization in addition to sequence homology. The proposed method can be used in large-scale analyses of proteomes
    corecore