24,590 research outputs found

    Light weight fire resistant graphite composites

    Get PDF
    Composite structures with a honeycomb core and characterized by lightweight and excellent fire resistance are provided. These sandwich structures employ facesheets made up of bismaleimide-vinyl styrylpyridine copolymers with fiber reinforcement such as carbon fiber reinforcement. In preferred embodiments the facesheets are over layered with a decorative film. The properties of these composites make them attractive materials of construction aircraft and spacecraft

    Palatable Meal Anticipation in Mice

    Get PDF
    The ability to sense time and anticipate events is a critical skill in nature. Most efforts to understand the neural and molecular mechanisms of anticipatory behavior in rodents rely on daily restricted food access, which induces a robust increase of locomotor activity in anticipation of daily meal time. Interestingly, rats also show increased activity in anticipation of a daily palatable meal even when they have an ample food supply, suggesting a role for brain reward systems in anticipatory behavior, and providing an alternate model by which to study the neurobiology of anticipation in species, such as mice, that are less well adapted to "stuff and starve" feeding schedules. To extend this model to mice, and exploit molecular genetic resources available for that species, we tested the ability of wild-type mice to anticipate a daily palatable meal. We observed that mice with free access to regular chow and limited access to highly palatable snacks of chocolate or “Fruit Crunchies” avidly consumed the snack but did not show anticipatory locomotor activity as measured by running wheels or video-based behavioral analysis. However, male mice receiving a snack of high fat chow did show increased food bin entry prior to access time and a modest increase in activity in the two hours preceding the scheduled meal. Interestingly, female mice did not show anticipation of a daily high fat meal but did show increased activity at scheduled mealtime when that meal was withdrawn. These results indicate that anticipation of a scheduled food reward in mice is behavior, diet, and gender specific

    Investigation of Corrosion in Aluminum/Adhesive Lap-Splices Using Pulse-Echo Ultrasonic Techniques

    Get PDF
    Corrosion can exist in any layer of a simple aluminum/adhesive lap-splice. For lap- splices where only one aluminum surface is accessible, first layer corrosion is corrosion that occurs on or under the accessible skin; and second layer corrosion is that which exists behind the adhesive/scrim layer on the upper or lower surface of the inaccessible skin. Many different nondestructive evaluation (NDE) techniques can detect first layer corrosion, and much progress has been made quantifying corrosion that exists in this layer[l]. Due to the layered nature of a lap-splice, second layer corrosion is much more difficult to detect, and also more difficult to quantify. Current maintenance procedures also make it difficult for researchers to obtain lap-splice corrosion samples from serviceable aircraft. The detection of corrosion in lap-splice assemblies has been given an important inspection priority by the airline industry, and regular inspection procedures have been developed to meet these new requirements. During maintenance, if corrosion is suspected in a lap-splice area, the area is opened up for further inspection by removing the rivets, adhesive and sometimes the paint. If the corrosion damage is beyond the manufacturer’s tolerances, the corroded area is cut out and patch-repaired; otherwise, the corrosion is removed by chemical or mechanical means, leaving a serviceable but thinner metal skin when the joint is reassembled[2]. In either case the original character of the lap-splice has been destroyed by the maintenance process, and its use for NDE purposes is lost. In this light, it becomes necessary for researchers to fabricate their own laboratory samples and compare these artificial samples with actual in-service samples

    Gravitational Flux Tubes

    Get PDF
    By studying multidimensional Kaluza-Klein theories, or gravity plus U(1) or SU(2) gauge fields it is shown that these theories possess similar flux tube solutions. The gauge field which fills the tube geometry of these solutions leads to a comparision with the flux tube structures in QCD. These solutions also carry a ``magnetic'' charge, Q, which for the SU(2) Einstein-Yang-Mills (EYM) system exhibits a dual relationship with the Yang-Mills gauge coupling, g, (Q=1/gQ=1/g). As Q→0Q \to 0 or Q→∞Q \to \infty, g→∞g \to \infty or g→0g \to 0 respectively. Thus within this classical EYM field theory we find solutions which have features - flux tubes, magnetic charges, large value of the gauge coupling - that are similar to the key ingredients of confinement in QCD.Comment: REVTEX, 12 p

    STEPS - an approach for human mobility modeling

    Get PDF
    In this paper we introduce Spatio-TEmporal Parametric Stepping (STEPS) - a simple parametric mobility model which can cover a large spectrum of human mobility patterns. STEPS makes abstraction of spatio-temporal preferences in human mobility by using a power law to rule the nodes movement. Nodes in STEPS have preferential attachment to favorite locations where they spend most of their time. Via simulations, we show that STEPS is able, not only to express the peer to peer properties such as inter-ontact/contact time and to reflect accurately realistic routing performance, but also to express the structural properties of the underlying interaction graph such as small-world phenomenon. Moreover, STEPS is easy to implement, exible to configure and also theoretically tractable

    Violating conformal invariance: Two-dimensional clusters grafted to wedges, cones, and branch points of Riemann surfaces

    Get PDF
    We present simulations of 2-d site animals on square and triangular lattices in non-trivial geomeLattice animals are one of the few critical models in statistical mechanics violating conformal invariance. We present here simulations of 2-d site animals on square and triangular lattices in non-trivial geometries. The simulations are done with the newly developed PERM algorithm which gives very precise estimates of the partition sum, yielding precise values for the entropic exponent Ξ\theta (ZN∌ΌNN−ξZ_N \sim \mu^N N^{-\theta}). In particular, we studied animals grafted to the tips of wedges with a wide range of angles α\alpha, to the tips of cones (wedges with the sides glued together), and to branching points of Riemann surfaces. The latter can either have kk sheets and no boundary, generalizing in this way cones to angles α>360\alpha > 360 degrees, or can have boundaries, generalizing wedges. We find conformal invariance behavior, Ξ∌1/α\theta \sim 1/\alpha, only for small angles (αâ‰Ș2π\alpha \ll 2\pi), while ξ≈const−α/2π\theta \approx const -\alpha/2\pi for α≫2π\alpha \gg 2\pi. These scalings hold both for wedges and cones. A heuristic (non-conformal) argument for the behavior at large α\alpha is given, and comparison is made with critical percolation.Comment: 4 pages, includes 3 figure

    Fundamental limits to optical response in absorptive systems

    Get PDF
    At visible and infrared frequencies, metals show tantalizing promise for strong subwavelength resonances, but material loss typically dampens the response. We derive fundamental limits to the optical response of absorptive systems, bounding the largest enhancements possible given intrinsic material losses. Through basic conservation-of-energy principles, we derive geometry-independent limits to per-volume absorption and scattering rates, and to local-density-of-states enhancements that represent the power radiated or expended by a dipole near a material body. We provide examples of structures that approach our absorption and scattering limits at any frequency, by contrast, we find that common "antenna" structures fall far short of our radiative LDOS bounds, suggesting the possibility for significant further improvement. Underlying the limits is a simple metric, âˆŁÏ‡âˆŁ2/ImâĄÏ‡|\chi|^2 / \operatorname{Im} \chi for a material with susceptibility χ\chi, that enables broad technological evaluation of lossy materials across optical frequencies.Comment: 21 pages and 6 figures (excluding appendices, references

    Grain Boundary Induced Magneto-Far Infrared Resonances in Superconducting YBa2_2Cu3_3O7−ή_{7-\delta } Thin Films

    Full text link
    Spectral features induced by 45∘^{\circ } in-plane misoriented grains have been observed in the far infrared magneto-transmission of YBa2_2Cu3_3O7−ή% _{7-\delta } thin films. Two strong dispersive features are found at 80 and 160 cm−1cm^{-1} and a weaker one at 116 cm−1cm^{-1}. The data can be well represented by Lorentzian oscillator contributions to the conductivity. Several possible interpretations are discussed. We conclude that the resonances are due to vortex core excitations.Comment: Latex file (14 pages) + 4 Postscript figures, uuencode
    • 

    corecore