32,742 research outputs found

    Effective interactions between star polymers

    Full text link
    We study numerically the effective pair potential between star polymers with equal arm lengths and equal number ff of arms. The simulations were done for the soft core Domb-Joyce model on the simple cubic lattice, to minimize corrections to scaling and to allow for an unlimited number of arms. For the sampling, we used the pruned-enriched Rosenbluth method (PERM). We find that the potential is much less soft than claimed in previous papers, in particular for f≫1f\gg 1. While we verify the logarithmic divergence of V(r)V(r), with rr being the distance between the two cores, predicted by Witten and Pincus, we find for f>20f>20 that the Mayer function is hardly distinguishable from that for a Gaussian potential.Comment: 5 pages, 5 figure

    Baryon resonances and hadronic interactions in a finite volume

    Get PDF
    In a finite volume, resonances and multi-hadron states are identified by discrete energy levels. When comparing the results of lattice QCD calculations to scattering experiments, it is important to have a way of associating the energy spectrum of the finite-volume lattice with the asymptotic behaviour of the S-matrix. A new technique for comparing energy eigenvalues with scattering phase shifts is introduced, which involves the construction of an exactly solvable matrix Hamiltonian model. The model framework is applied to the case of Δ→Nπ\Delta\rightarrow N\pi decay, but is easily generalized to include multi-channel scattering. Extracting resonance parameters involves matching the energy spectrum of the model to that of a lattice QCD calculation. The resulting fit parameters are then used to generate phase shifts. Using a sample set of pseudodata, it is found that the extraction of the resonance position is stable with respect to volume for a variety of regularization schemes, and compares favorably with the well-known Luescher method. The model-dependence of the result is briefly investigated.Comment: 7 pages, 3 figures. Talk presented at the 30th International Symposium on Lattice Field Theory (Lattice 2012), June 24-29, 2012, Cairns, Australi

    Sagnac Interferometer Enhanced Particle Tracking in Optical Tweezers

    Full text link
    A setup is proposed to enhance tracking of very small particles, by using optical tweezers embedded within a Sagnac interferometer. The achievable signal-to-noise ratio is shown to be enhanced over that for a standard optical tweezers setup. The enhancement factor increases asymptotically as the interferometer visibility approaches 100%, but is capped at a maximum given by the ratio of the trapping field intensity to the detector saturation threshold. For an achievable visibility of 99%, the signal-to-noise ratio is enhanced by a factor of 200, and the minimum trackable particle size is 2.4 times smaller than without the interferometer

    Experimental Identification of the Kink Instability as a Poloidal Flux Amplification Mechanism for Coaxial Gun Spheromak Formation

    Get PDF
    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration.Comment: accepted for publication in Physical Review Letter

    Comment on "Quantum Decoherence in Disordered Mesoscopic Systems"

    Full text link
    In a recent paper, Phys. Rev. Lett. 81, 1074 (1998), Golubev and Zaikin (GZ) found that ``zero-point fluctuations of electrons'' contribute to the dephasing rate extracted from the magnetoresistance. As a result, the dephasing rate remains finite at zero temperature. GZ claimed that their results ``agree well with the experimental data''. We point out that the GZ results are incompatible with (i) conventional perturbation theory of the effects of interaction on weak localization (WL), and (ii) with the available experimental data. More detailed criticism of GZ findings can be found in cond-mat/9808053.Comment: 1 page, no figure

    Ferromagnetic insulating state in tensile-strained LaCoO3_3 thin films

    Full text link
    With local density approximation + Hubbard UU (LDA+UU) calculations, we show that the ferromagnetic (FM) insulating state observed in tensile-strained LaCoO3_3 epitaxial thin films is most likely a mixture of low-spin (LS) and high-spin (HS) Co, namely, a HS/LS mixture state. Compared with other FM states, including the intermediate-spin (IS) state (\textit{metallic} within LDA+UU), which consists of IS Co only, and the insulating IS/LS mixture state, the HS/LS state is the most favorable one. The FM order in HS/LS state is stabilized via the superexchange interactions between adjacent LS and HS Co. We also show that Co spin state can be identified by measuring the electric field gradient (EFG) at Co nucleus via nuclear magnetic resonance (NMR) spectroscopy

    A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling

    Get PDF
    HiResFlood-UCI was developed by coupling the NWS's hydrologic model (HL-RDHM) with the hydraulic model (BreZo) for flash flood modeling at decameter resolutions. The coupled model uses HL-RDHM as a rainfall-runoff generator and replaces the routing scheme of HL-RDHM with the 2D hydraulic model (BreZo) in order to predict localized flood depths and velocities. A semi-automated technique of unstructured mesh generation was developed to cluster an adequate density of computational cells along river channels such that numerical errors are negligible compared with other sources of error, while ensuring that computational costs of the hydraulic model are kept to a bare minimum. HiResFlood-UCI was implemented for a watershed (ELDO2) in the DMIP2 experiment domain in Oklahoma. Using synthetic precipitation input, the model was tested for various components including HL-RDHM parameters (a priori versus calibrated), channel and floodplain Manning n values, DEM resolution (10 m versus 30 m) and computation mesh resolution (10 m+ versus 30 m+). Simulations with calibrated versus a priori parameters of HL-RDHM show that HiResFlood-UCI produces reasonable results with the a priori parameters from NWS. Sensitivities to hydraulic model resistance parameters, mesh resolution and DEM resolution are also identified, pointing to the importance of model calibration and validation for accurate prediction of localized flood intensities. HiResFlood-UCI performance was examined using 6 measured precipitation events as model input for model calibration and validation of the streamflow at the outlet. The Nash–Sutcliffe Efficiency (NSE) obtained ranges from 0.588 to 0.905. The model was also validated for the flooded map using USGS observed water level at an interior point. The predicted flood stage error is 0.82 m or less, based on a comparison to measured stage. Validation of stage and discharge predictions builds confidence in model predictions of flood extent and localized velocities, which are fundamental to reliable flash flood warning

    Quantum study of information delay in electromagetically induced transparency

    Get PDF
    Using electromagnetically induced transparency (EIT), it is possible to delay and store light in atomic ensembles. Theoretical modelling and recent experiments have suggested that the EIT storage mechanism can be used as a memory for quantum information. We present experiments that quantify the noise performance of an EIT system for conjugate amplitude and phase quadratures. It is shown that our EIT system adds excess noise to the delayed light that has not hitherto been predicted by published theoretical modelling. In analogy with other continuous-variable quantum information systems, the performance of our EIT system is characterised in terms of conditional variance and signal transfer.Comment: 4 pages, 4 figure

    Rational Approximate Symmetries of KdV Equation

    Full text link
    We construct one-parameter deformation of the Dorfman Hamiltonian operator for the Riemann hierarchy using the quasi-Miura transformation from topological field theory. In this way, one can get the approximately rational symmetries of KdV equation and then investigate its bi-Hamiltonian structure.Comment: 14 pages, no figure
    • …
    corecore