32,742 research outputs found
Effective interactions between star polymers
We study numerically the effective pair potential between star polymers with
equal arm lengths and equal number of arms. The simulations were done for
the soft core Domb-Joyce model on the simple cubic lattice, to minimize
corrections to scaling and to allow for an unlimited number of arms. For the
sampling, we used the pruned-enriched Rosenbluth method (PERM). We find that
the potential is much less soft than claimed in previous papers, in particular
for . While we verify the logarithmic divergence of , with
being the distance between the two cores, predicted by Witten and Pincus, we
find for that the Mayer function is hardly distinguishable from that for
a Gaussian potential.Comment: 5 pages, 5 figure
Baryon resonances and hadronic interactions in a finite volume
In a finite volume, resonances and multi-hadron states are identified by
discrete energy levels. When comparing the results of lattice QCD calculations
to scattering experiments, it is important to have a way of associating the
energy spectrum of the finite-volume lattice with the asymptotic behaviour of
the S-matrix. A new technique for comparing energy eigenvalues with scattering
phase shifts is introduced, which involves the construction of an exactly
solvable matrix Hamiltonian model. The model framework is applied to the case
of decay, but is easily generalized to include
multi-channel scattering. Extracting resonance parameters involves matching the
energy spectrum of the model to that of a lattice QCD calculation. The
resulting fit parameters are then used to generate phase shifts. Using a sample
set of pseudodata, it is found that the extraction of the resonance position is
stable with respect to volume for a variety of regularization schemes, and
compares favorably with the well-known Luescher method. The model-dependence of
the result is briefly investigated.Comment: 7 pages, 3 figures. Talk presented at the 30th International
Symposium on Lattice Field Theory (Lattice 2012), June 24-29, 2012, Cairns,
Australi
Sagnac Interferometer Enhanced Particle Tracking in Optical Tweezers
A setup is proposed to enhance tracking of very small particles, by using
optical tweezers embedded within a Sagnac interferometer. The achievable
signal-to-noise ratio is shown to be enhanced over that for a standard optical
tweezers setup. The enhancement factor increases asymptotically as the
interferometer visibility approaches 100%, but is capped at a maximum given by
the ratio of the trapping field intensity to the detector saturation threshold.
For an achievable visibility of 99%, the signal-to-noise ratio is enhanced by a
factor of 200, and the minimum trackable particle size is 2.4 times smaller
than without the interferometer
Experimental Identification of the Kink Instability as a Poloidal Flux Amplification Mechanism for Coaxial Gun Spheromak Formation
The magnetohydrodynamic kink instability is observed and identified
experimentally as a poloidal flux amplification mechanism for coaxial gun
spheromak formation. Plasmas in this experiment fall into three distinct
regimes which depend on the peak gun current to magnetic flux ratio, with (I)
low values resulting in a straight plasma column with helical magnetic field,
(II) intermediate values leading to kinking of the column axis, and (III) high
values leading immediately to a detached plasma. Onset of column kinking agrees
quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo
which converts toroidal to poloidal flux. Regime II clearly leads to both
poloidal flux amplification and the development of a spheromak configuration.Comment: accepted for publication in Physical Review Letter
Comment on "Quantum Decoherence in Disordered Mesoscopic Systems"
In a recent paper, Phys. Rev. Lett. 81, 1074 (1998), Golubev and Zaikin (GZ)
found that ``zero-point fluctuations of electrons'' contribute to the dephasing
rate extracted from the magnetoresistance. As a result, the dephasing rate
remains finite at zero temperature. GZ claimed that their results ``agree well
with the experimental data''. We point out that the GZ results are incompatible
with (i) conventional perturbation theory of the effects of interaction on weak
localization (WL), and (ii) with the available experimental data. More detailed
criticism of GZ findings can be found in cond-mat/9808053.Comment: 1 page, no figure
Ferromagnetic insulating state in tensile-strained LaCoO thin films
With local density approximation + Hubbard (LDA+) calculations, we
show that the ferromagnetic (FM) insulating state observed in tensile-strained
LaCoO epitaxial thin films is most likely a mixture of low-spin (LS) and
high-spin (HS) Co, namely, a HS/LS mixture state. Compared with other FM
states, including the intermediate-spin (IS) state (\textit{metallic} within
LDA+), which consists of IS Co only, and the insulating IS/LS mixture state,
the HS/LS state is the most favorable one. The FM order in HS/LS state is
stabilized via the superexchange interactions between adjacent LS and HS Co. We
also show that Co spin state can be identified by measuring the electric field
gradient (EFG) at Co nucleus via nuclear magnetic resonance (NMR) spectroscopy
A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling
HiResFlood-UCI was developed by coupling the NWS's hydrologic model (HL-RDHM) with the hydraulic model (BreZo) for flash flood modeling at decameter resolutions. The coupled model uses HL-RDHM as a rainfall-runoff generator and replaces the routing scheme of HL-RDHM with the 2D hydraulic model (BreZo) in order to predict localized flood depths and velocities. A semi-automated technique of unstructured mesh generation was developed to cluster an adequate density of computational cells along river channels such that numerical errors are negligible compared with other sources of error, while ensuring that computational costs of the hydraulic model are kept to a bare minimum. HiResFlood-UCI was implemented for a watershed (ELDO2) in the DMIP2 experiment domain in Oklahoma. Using synthetic precipitation input, the model was tested for various components including HL-RDHM parameters (a priori versus calibrated), channel and floodplain Manning n values, DEM resolution (10 m versus 30 m) and computation mesh resolution (10 m+ versus 30 m+). Simulations with calibrated versus a priori parameters of HL-RDHM show that HiResFlood-UCI produces reasonable results with the a priori parameters from NWS. Sensitivities to hydraulic model resistance parameters, mesh resolution and DEM resolution are also identified, pointing to the importance of model calibration and validation for accurate prediction of localized flood intensities. HiResFlood-UCI performance was examined using 6 measured precipitation events as model input for model calibration and validation of the streamflow at the outlet. The Nash–Sutcliffe Efficiency (NSE) obtained ranges from 0.588 to 0.905. The model was also validated for the flooded map using USGS observed water level at an interior point. The predicted flood stage error is 0.82 m or less, based on a comparison to measured stage. Validation of stage and discharge predictions builds confidence in model predictions of flood extent and localized velocities, which are fundamental to reliable flash flood warning
Quantum study of information delay in electromagetically induced transparency
Using electromagnetically induced transparency (EIT), it is possible to delay
and store light in atomic ensembles. Theoretical modelling and recent
experiments have suggested that the EIT storage mechanism can be used as a
memory for quantum information. We present experiments that quantify the noise
performance of an EIT system for conjugate amplitude and phase quadratures. It
is shown that our EIT system adds excess noise to the delayed light that has
not hitherto been predicted by published theoretical modelling. In analogy with
other continuous-variable quantum information systems, the performance of our
EIT system is characterised in terms of conditional variance and signal
transfer.Comment: 4 pages, 4 figure
Rational Approximate Symmetries of KdV Equation
We construct one-parameter deformation of the Dorfman Hamiltonian operator
for the Riemann hierarchy using the quasi-Miura transformation from topological
field theory. In this way, one can get the approximately rational symmetries of
KdV equation and then investigate its bi-Hamiltonian structure.Comment: 14 pages, no figure
- …