218 research outputs found

    Quantum correlation generation capability of experimental processes

    Full text link
    Einstein-Podolsky-Rosen (EPR) steering and Bell nonlocality illustrate two different kinds of correlations predicted by quantum mechanics. They not only motivate the exploration of the foundation of quantum mechanics, but also serve as important resources for quantum-information processing in the presence of untrusted measurement apparatuses. Herein, we introduce a method for characterizing the creation of EPR steering and Bell nonlocality for dynamical processes in experiments. We show that the capability of an experimental process to create quantum correlations can be quantified and identified simply by preparing separable states as test inputs of the process and then performing local measurements on single qubits of the corresponding outputs. This finding enables the construction of objective benchmarks for the two-qubit controlled operations used to perform universal quantum computation. We demonstrate this utility by examining the experimental capability of creating quantum correlations with the controlled-phase operations on the IBM Quantum Experience and Amazon Braket Rigetti superconducting quantum computers. The results show that our method provides a useful diagnostic tool for evaluating the primitive operations of nonclassical correlation creation in noisy intermediate scale quantum devices.Comment: 5 figures, 3 appendice

    Simple and Specific Dual-Wavelength Excitable Dye Staining for Glycoprotein Detection in Polyacrylamide Gels and Its Application in Glycoproteomics

    Get PDF
    In this study, a commercially available fluorescent dye, Lissamine rhodamine B sulfonyl hydrazine (LRSH), was designed to specifically stain the glycoproteins in polyacrylamide gels. Through the periodate/Schiff base mechanism, the fluorescent dye readily attaches to glycoproteins and the fluorescence can be simultaneously observed under either 305 nm or 532 nm excitation therefore, the dye-stained glycoproteins can be detected under a regular UV transilluminator or a more elegant laser-based gel scanner. The specificity and detection limit were examined using a standard protein mixture in polyacrylamide gels in this study. The application of this glycoprotein stain dye was further demonstrated using pregnancy urine samples. The fluorescent spots were further digested in gel and their identities confirmed through LC-MS/MS analysis and database searching. In addition, the N-glycosylation sites of LRSH-labeled uromodulin were readily mapped via in-gel PNGaseF deglycosylation and LC-MS/MS analysis, which indicated that this fluorescent dye labeling does not interfere with enzymatic deglycosylation. Hence, the application of this simple and specific dual-wavelength excitable dye staining in current glycoproteome research is promising

    Integrated Analyses of Copy Number Variations and Gene Expression in Lung Adenocarcinoma

    Get PDF
    Numerous efforts have been made to elucidate the etiology and improve the treatment of lung cancer, but the overall five-year survival rate is still only 15%. Identification of prognostic biomarkers for lung cancer using gene expression microarrays poses a major challenge in that very few overlapping genes have been reported among different studies. To address this issue, we have performed concurrent genome-wide analyses of copy number variation and gene expression to identify genes reproducibly associated with tumorigenesis and survival in non-smoking female lung adenocarcinoma. The genomic landscape of frequent copy number variable regions (CNVRs) in at least 30% of samples was revealed, and their aberration patterns were highly similar to several studies reported previously. Further statistical analysis for genes located in the CNVRs identified 475 genes differentially expressed between tumor and normal tissues (p<10−5). We demonstrated the reproducibility of these genes in another lung cancer study (p = 0.0034, Fisher's exact test), and showed the concordance between copy number variations and gene expression changes by elevated Pearson correlation coefficients. Pathway analysis revealed two major dysregulated functions in lung tumorigenesis: survival regulation via AKT signaling and cytoskeleton reorganization. Further validation of these enriched pathways using three independent cohorts demonstrated effective prediction of survival. In conclusion, by integrating gene expression profiles and copy number variations, we identified genes/pathways that may serve as prognostic biomarkers for lung tumorigenesis

    Unprecedented random lasing in 2D organolead halide single-crystalline perovskite microrods

    Get PDF
    Three-dimensional organic–inorganic hybrid halide perovskites have been demonstrated as great materials for applications in optoelectronics and photonics. However, their inherent instabilities in the presence of moisture, light, and heat may hinder their commercialization. Alternatively, emerging two-dimensional (2D) organic–inorganic hybrid perovskites have recently attracted increasing attention owing to their great environmental stability and inherent natural quantum-well structure. In this work, we have synthesized a high-quality long-chain organic diammonium spacer assisted 2D hybrid perovskite FA-(N-MPDA)PbBr4 (FA = formamidinium and N-MPDA = N-methylpropane-1,3-diammonium) by the slow evaporation at constant temperature method. The millimeter-sized single-crystalline microrods demonstrate low threshold random lasing behavior at room temperature. The single-crystalline 2D hybrid perovskite random laser achieved a very narrow linewidth (∼0.1 nm) with a low threshold (∼0.5 μJ cm−2) and a high quality factor (∼5350). Furthermore, the 2D hybrid microrod laser shows stable lasing emission with no measurable degradation after at least 2 h under continuous illumination, which substantially proves the stability of 2D perovskites. Our results demonstrate the promise of 2D organic–inorganic microrod-shaped perovskites and provide an important step toward the realization of high-performance optoelectronic devices
    corecore