16 research outputs found

    Structure and Mechanism of a Nonhaem-Iron SAM-Dependent C-Methyltransferase and Its Engineering to a Hydratase and an O-Methyltransferase

    No full text
    Abstract In biological systems, methylation is most commonly performed by methyltransferases (MTs) using the electrophilic methyl source S-adenosyl-L-methionine (SAM) via the S N 2 mechanism. (2S,3S)--Methylphenylalanine, a nonproteinogenic amino acid, is a building unit of the glycopeptide antibiotic mannopeptimycin. The gene product of mppJ from the mannopeptimycin-biosynthetic gene cluster is the MT that methylates the benzylic C atom of phenylpyruvate (Ppy) to give MePpy. Although the benzylic C atom of Ppy is acidic, how its nucleophilicity is further enhanced to become an acceptor for C-methylation has not conclusively been determined. Here, a structural approach is used to address the mechanism of MppJ and to engineer it for new functions. The purified MppJ displays a turquoise colour, implying the presence of a metal ion. The crystal structures reveal MppJ to be the first ferric ion SAMdependent MT. An additional four structures of binary and ternary complexes illustrate the molecular mechanism for the metal ion-dependent methyltransfer reaction. Overall, MppJ has a nonhaem iron centre that bind, orients and activates the -ketoacid substrate and has developed a sandwiched bi-water device to avoid the formation of the unwanted reactive oxo-iron(IV) species during the C-methylation reaction. This discovery further prompted the conversion of the MT into a structurally/functionally unrelated new enzyme. Through stepwise mutagenesis and manipulation of coordination chemistry, MppJ was engineered to perform both Lewis acid-assisted hydration and/or Omethyltransfer reactions to give stereospecific new compounds. This process was validated by six crystal structures. The results reported in this study will facilitate the development and design of new biocatalysts for difficult-tosynthesize biochemicals

    Spontaneous inflammatory pain model from a mouse line with <it>N</it>-ethyl-<it>N</it>-nitrosourea mutagenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>N</it>-ethyl-<it>N</it>-nitrosourea mutagenesis was used to induce a point mutation in C57BL/6 J mice. Pain-related phenotype screening was performed in 915 G3 mice. We report the detection of a heritable recessive mutant in meiotic recombinant N1F1 mice that caused an abnormal pain sensitivity phenotype with spontaneous skin inflammation in the paws and ears.</p> <p>Methods</p> <p>We investigated abnormal sensory processing, neuronal peptides, and behavioral responses after the induction of autoinflammatory disease. Single-nucleotide polymorphism (SNP) markers and polymerase chain reaction product sequencing were used to identify the mutation site.</p> <p>Results</p> <p>All affected mice developed paw inflammation at 4–8 weeks. Histological examinations revealed hyperplasia of the epidermis in the inflamed paws and increased macrophage expression in the spleen and paw tissues. Mechanical and thermal nociceptive response thresholds were reduced in the affected mice. Locomotor activity was decreased in affected mice with inflamed hindpaws, and this reduction was attributable to the avoidance of contact of the affected paw with the floor. Motor strength and daily activity in the home cage in the affected mice did not show any significant changes. Although Fos immunoreactivity was normal in the dorsal horn of affected mice, calcitonin gene-related peptide immunoreactivity significantly increased in the deep layer of the dorsal horn. The number of microglia increased in the spinal cord, hippocampus, and cerebral cortex in affected mice, and the proliferation of microglia was maintained for a couple of months. Two hundred eighty-five SNP markers were used to reveal the affected gene locus, which was found on the distal part of chromosome 18. A point mutation was detected at A to G in exon 8 of the <it>pstpip2</it> gene, resulting in a conserved tyrosine residue at amino acid 180 replaced by cysteine (Y180 C).</p> <p>Conclusions</p> <p>The data provide definitive evidence that a mutation in <it>pstpip2</it> causes autoinflammatory disease in an <it>N</it>-ethyl-<it>N</it>-nitrosourea mutagenesis mouse model. Thus, our <it>pstpip2</it> mutant mice provide a new model for investigating the potential mechanisms of inflammatory pain.</p

    KasQ an Epimerase Primes the Biosynthesis of Aminoglycoside Antibiotic Kasugamycin and KasF/H Acetyltransferases Inactivate Its Activity

    No full text
    Kasugamycin (KSM), an aminoglycoside antibiotic, is composed of three chemical moieties: D-chiro-inositol, kasugamine and glycine imine. Despite being discovered more than 50 years ago, the biosynthetic pathway of KSM remains an unresolved puzzle. Here we report a structural and functional analysis for an epimerase, KasQ, that primes KSM biosynthesis rather than the previously proposed KasF/H, which instead acts as an acetyltransferase, inactivating KSM. Our biochemical and biophysical analysis determined that KasQ converts UDP-GlcNAc to UDP-ManNAc as the initial step in the biosynthetic pathway. The isotope-feeding study further confirmed that 13C, 15N-glucosamine/UDP-GlcNH2 rather than glucose/UDP-Glc serves as the direct precursor for the formation of KSM. Both KasF and KasH were proposed, respectively, converting UDP-GlcNH2 and KSM to UDP-GlcNAc and 2-N’-acetyl KSM. Experimentally, KasF is unable to do so; both KasF and KasH are instead KSM-modifying enzymes, while the latter is more specific and reactive than the former in terms of the extent of resistance. The information gained here lays the foundation for mapping out the complete KSM biosynthetic pathway

    Engineering Transaldolase in <i>Pichia stipitis</i> to Improve Bioethanol Production

    No full text
    In our effort to improve the efficiency and yield of xylose-to-ethanol bioconversion in <i>Pichia stipitis</i>, the transaldolase (TAL) in the pentose phosphate pathway was identified as a rate-limiting enzyme for improvement. A mutant containing the Q263R change was first obtained by directed evolution with 5-fold increase of activity, which was then incorporated into <i>P. stipites</i> <i>via</i> the pYDS vector to produce a genetically stable strain for fermentation on xylose. In comparison with the parental strain, TAL-Q263R­(+) increases ethanol prodcution by 36% and 100% as measured by volumetric production rate and specific production rate, respectively. Thus improving the transaldolase activity in <i>P. stipitis</i> can significantly increase the rate and yield of xylose conversion to ethanol

    Structural and chemical trapping of flavin‐oxide intermediates reveals substrate‐directed reaction multiplicity

    No full text
    Though reactive flavin-N5/C4α-oxide intermediates can be spectroscopically profiled for some flavin-assisted enzymatic reactions, their exact chemical configurations are hardly visualized. Structural systems biology and stable isotopic labelling techniques were exploited to correct this stereotypical view. Three transition-like complexes, the α-ketoacid
N5-FMNox complex (I), the FMNox -N5-aloxyl-C'α- -C4α+ zwitterion (II), and the FMN-N5-ethenol-N5-C4α-epoxide (III), were determined from mandelate oxidase (Hmo) or its mutant Y128F (monooxygenase) crystals soaked with monofluoropyruvate (a product mimic), establishing that N5 of FMNox an alternative reaction center can polarize to an ylide-like mesomer in the active site. In contrast, four distinct flavin-C4α-oxide adducts (IV-VII) from Y128F crystals soaked with selected substrates materialize C4α of FMN an intrinsic reaction center, witnessing oxidation, Baeyer-Villiger/peroxide-assisted decarboxylation, and epoxidation reactions. In conjunction with stopped-flow kinetics, the multifaceted flavin-dependent reaction continuum is physically dissected at molecular level for the first time

    Multiple Complexes of Long AliphaticN-Acyltransferases Lead to Synthesis of 2,6-Diacylated/2-Acyl-Substituted Glycopeptide Antibiotics, Effectively Killing Vancomycin-Resistant Enterococcus

    No full text
    Teicoplanin A2-2 (Tei)/A40926 is the last-line antibiotic to treat multidrug-resistant Gram-positive bacterial infections, e.g., methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE). This class of antibiotics is powered by the N-acyltransferase (NAT) Orf11*/Dbv8 through N-acylation on glucosamine at the central residue of Tei/A40926 pseudoaglycone. The NAT enzyme possesses enormous value in untapped applications; its advanced development is hampered largely due to a lack of structural information. In this report, we present eight high-resolution X-ray crystallographic unary, binary, and ternary complexes in order to decipher the molecular basis for NAT's functionality. The enzyme undergoes a multistage conformational change upon binding of acyl-CoA, thus allowing the uploading of Tei pseudoaglycone to enable the acyl-transfer reaction to take place in the occlusion between the N- and C-halves of the protein. The acyl moiety of acyl-CoA can be bulky or lengthy, allowing a large extent of diversity in new derivatives that can be formed upon its transfer. Vancomycin/synthetic acyl-N-acetyl cysteamine was not expected to be able to serve as a surrogate for an acyl acceptor/donor, respectively. Most strikingly, NAT can catalyze formation of 2-N,6-O-diacylated or C6→C2 acyl-substituted Tei analogues through an unusual 1,4-migration mechanism under stoichiometric/solvational reaction control, wherein selected representatives showed excellent biological activities, effectively counteracting major types (VanABC) of VRE

    Biosynthesis of Streptolidine Involved Two Unexpected IntermediatesProduced by a Dihydroxylase and a Cyclase through UnusualMechanisms

    No full text
    Streptothricin-F (STT-F), one of the early-discovered antibiotics, consists of three components, a ÎČ-lysine homopolymer, an aminosugar d-gulosamine, and an unusual bicyclic streptolidine. The biosynthesis of streptolidine is a long-lasting but unresolved puzzle. Herein, a combination of genetic/biochemical/structural approaches was used to unravel this problem. The STT gene cluster was first sequenced from a Streptomyces variant BCRC 12163, wherein two gene products OrfP and OrfR were characterized in vitro to be a dihydroxylase and a cyclase, respectively. Thirteen high-resolution crystal structures for both enzymes in different reaction intermediate states were snapshotted to help elucidate their catalytic mechanisms. OrfP catalyzes an FeII-dependent double hydroxylation reaction converting l-Arg into (3R,4R)-(OH)2-l-Arg via (3S)-OH-l-Arg, while OrfR catalyzes an unusual PLP-dependent elimination/addition reaction cyclizing (3R,4R)-(OH)2-l-Arg to the six-membered (4R)-OH-capreomycidine. The biosynthetic mystery finally comes to light as the latter product was incorporation into STT-F by a feeding experiment
    corecore