1,331 research outputs found

    Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment and valley-spin

    Full text link
    Excitons in monolayer semiconductors have large optical transition dipole for strong coupling with light field. Interlayer excitons in heterobilayers, with layer separation of electron and hole components, feature large electric dipole that enables strong coupling with electric field and exciton-exciton interaction, at the cost that the optical dipole is substantially quenched (by several orders of magnitude). In this letter, we demonstrate the ability to create a new class of excitons in transition metal dichalcogenide (TMD) hetero- and homo-bilayers that combines the advantages of monolayer- and interlayer-excitons, i.e. featuring both large optical dipole and large electric dipole. These excitons consist of an electron that is well confined in an individual layer, and a hole that is well extended in both layers, realized here through the carrier-species specific layer-hybridization controlled through the interplay of rotational, translational, band offset, and valley-spin degrees of freedom. We observe different species of such layer-hybridized valley excitons in different heterobilayer and homobilayer systems, which can be utilized for realizing strongly interacting excitonic/polaritonic gases, as well as optical quantum coherent controls of bidirectional interlayer carrier transfer either with upper conversion or down conversion in energy

    A contact formulation based on a volumetric potential: Application to isogeometric simulations of atrioventricular valves

    Get PDF
    This work formulates frictionless contact between solid bodies in terms of a repulsive potential energy term and illustrates how numerical integration of the resulting forces is computationally similar to the “pinball algorithm” proposed and studied by Belytschko and collaborators in the 1990s. We thereby arrive at a numerical approach that has both the theoretical advantages of a potential-based formulation and the algorithmic simplicity, computational efficiency, and geometrical versatility of pinball contact. The singular nature of the contact potential requires a specialized nonlinear solver and an adaptive time stepping scheme to ensure reliable convergence of implicit dynamic calculations. We illustrate the effectiveness of this numerical method by simulating several benchmark problems and the structural mechanics of the right atrioventricular (tricuspid) heart valve. Atrioventricular valve closure involves contact between every combination of shell surfaces, edges of shells, and cables, but our formulation handles all contact scenarios in a unified manner. We take advantage of this versatility to demonstrate the effects of chordal rupture on tricuspid valve coaptation behavior

    An Exploration of In-Context Learning for Speech Language Model

    Full text link
    Ever since the development of GPT-3 in the natural language processing (NLP) field, in-context learning (ICL) has played an important role in utilizing large language models (LLMs). By presenting the LM utterance-label demonstrations at the input, the LM can accomplish few-shot learning without relying on gradient descent or requiring explicit modification of its parameters. This enables the LM to learn and adapt in a black-box manner. Despite the success of ICL in NLP, little work is exploring the possibility of ICL in speech processing. This study proposes the first exploration of ICL with a speech LM without text supervision. We first show that the current speech LM does not have the ICL capability. With the proposed warmup training, the speech LM can, therefore, perform ICL on unseen tasks. In this work, we verify the feasibility of ICL for speech LM on speech classification tasks.Comment: The first two authors contributed equall

    Quantum correlation generation capability of experimental processes

    Full text link
    Einstein-Podolsky-Rosen (EPR) steering and Bell nonlocality illustrate two different kinds of correlations predicted by quantum mechanics. They not only motivate the exploration of the foundation of quantum mechanics, but also serve as important resources for quantum-information processing in the presence of untrusted measurement apparatuses. Herein, we introduce a method for characterizing the creation of EPR steering and Bell nonlocality for dynamical processes in experiments. We show that the capability of an experimental process to create quantum correlations can be quantified and identified simply by preparing separable states as test inputs of the process and then performing local measurements on single qubits of the corresponding outputs. This finding enables the construction of objective benchmarks for the two-qubit controlled operations used to perform universal quantum computation. We demonstrate this utility by examining the experimental capability of creating quantum correlations with the controlled-phase operations on the IBM Quantum Experience and Amazon Braket Rigetti superconducting quantum computers. The results show that our method provides a useful diagnostic tool for evaluating the primitive operations of nonclassical correlation creation in noisy intermediate scale quantum devices.Comment: 5 figures, 3 appendice

    Disordered Fe vacancies and superconductivity in potassium-intercalated iron selenide (K2-xFe4+ySe5)

    Full text link
    The parent compound of an unconventional superconductor must contain unusual correlated electronic and magnetic properties of its own. In the high-Tc potassium intercalated FeSe, there has been significant debate regarding what the exact parent compound is. Our studies unambiguously show that the Fe-vacancy ordered K2Fe4Se5 is the magnetic, Mott insulating parent compound of the superconducting state. Non-superconducting K2Fe4Se5 becomes a superconductor after high temperature annealing, and the overall picture indicates that superconductivity in K2-xFe4+ySe5 originates from the Fe-vacancy order to disorder transition. Thus, the long pending question whether magnetic and superconducting state are competing or cooperating for cuprate superconductors may also apply to the Fe-chalcogenide superconductors. It is believed that the iron selenides and related compounds will provide essential information to understand the origin of superconductivity in the iron-based superconductors, and possibly to the superconducting cuprates

    Diffusion Model-Augmented Behavioral Cloning

    Full text link
    Imitation learning addresses the challenge of learning by observing an expert's demonstrations without access to reward signals from environments. Most existing imitation learning methods that do not require interacting with environments either model the expert distribution as the conditional probability p(a|s) (e.g., behavioral cloning, BC) or the joint probability p(s, a) (e.g., implicit behavioral cloning). Despite its simplicity, modeling the conditional probability with BC usually struggles with generalization. While modeling the joint probability can lead to improved generalization performance, the inference procedure can be time-consuming and it often suffers from manifold overfitting. This work proposes an imitation learning framework that benefits from modeling both the conditional and joint probability of the expert distribution. Our proposed diffusion model-augmented behavioral cloning (DBC) employs a diffusion model trained to model expert behaviors and learns a policy to optimize both the BC loss (conditional) and our proposed diffusion model loss (joint). DBC outperforms baselines in various continuous control tasks in navigation, robot arm manipulation, dexterous manipulation, and locomotion. We design additional experiments to verify the limitations of modeling either the conditional probability or the joint probability of the expert distribution as well as compare different generative models
    corecore