134 research outputs found

    Graph Partitioning with Fujitsu Digital Annealer

    Full text link
    Graph partitioning, or community detection, is the cornerstone of many fields, such as logistics, transportation and smart power grids. Efficient computation and efficacious evaluation of communities are both essential, especially in commercial and industrial settings. However, the solution space of graph partitioning increases drastically with the number of vertices and subgroups. With an eye to solving large scale graph partitioning and other optimization problems within a short period of time, the Digital Annealer (DA), a specialized CMOS hardware also featuring improved algorithms, has been devised by Fujitsu Ltd. This study gauges Fujitsu DA's performance and running times. The modularity was implemented as both the objective function and metric for the solutions. The graph partitioning problems were formatted into Quadratic Unconstrained Binary Optimization (QUBO) structures so that they could be adequately imported into the DA. The DA yielded the highest modularity among other studies when partitioning Karate Club, Les Miserables, American Football, and Dolphin. Moreover, the DA was able to partition the Case 1354pegase power grid network into 45 subgroups, calling for 60,930 binary variables, whilst delivering optimal modularity results within a solving time of roughly 80 seconds. Our results suggest that the Fujitsu DA can be applied for rapid and efficient optimization for graph partitioning

    Conductance fluctuations in disordered 2D topological insulator wires: From quantum spin-Hall to ordinary quantum phases

    Get PDF
    Impurities and defects are ubiquitous in topological insulators (TIs) and thus understanding the effects of disorder on electronic transport is important. We calculate the distribution of the random conductance fluctuations P(G)P(G) of disordered 2D TI wires modeled by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian with realistic parameters. As we show, the disorder drives the TIs into different regimes: metal (M), quantum spin-Hall insulator (QSHI), and ordinary insulator (OI). By varying the disorder strength and Fermi energy, we calculate analytically and numerically P(G)P(G) across the entire phase diagram. The conductance fluctuations follow the statistics of the unitary universality class β=2\beta=2. At strong disorder and high energy, however, the size of the fluctutations δG\delta G reaches the universal value of the orthogonal symmetry class (β=1\beta=1). At the QSHI-M and QSHI-OI crossovers, the interplay between edge and bulk states plays a key role in the statistical properties of the conductance.Comment: 17 pages, 5 figure

    Nonlinear photoconductivities and quantum geometry of chiral multifold fermions

    Full text link
    Chiral multifold fermions are quasi-particles that appear only in chiral crystals such as transition metal silicides in the cubic B20 structure (i.e., the CoSi family), and they may show exotic physical properties. Here we study the injection and shift photoconductivities and also the related geometrical quantities for several types of chiral multifold fermions, including spin-1/2 as well as pseudospin-1 and -3/2 fermions, dubbed as Kramers Weyl, triple point and Rarita-Schwinger-Weyl (RSW) fermions, respectively. We utilize the minimal symmorphic model to describe the triple point fermions (TPF). We also consider the more realistic model Hamiltonian for the CoSi family including both linear and quadratic terms. We find that circular injection currents are quantized as a result of the Chern numbers carried by the multifold fermions within the linear models. Surprisingly, we discover that in the TPF model, linear shift conductivities are proportional to the pseudo spin-orbit coupling and independent of photon frequency. In contrast, for the RSW and Kramer Weyl fermions, the linear shift conductivity is linearly proportional to photon frequency. The numerical results agree with the power-counting analysis for quadratic Hamiltonians. The frequency independence of the linear shift conductivity could be attributed to the strong resonant symplectic Christoffel symbols of the flat bands. Moreover, the calculated symplectic Christoffel symbols show significant peaks at the nodes, suggesting that the shift currents are due to the strong geometrical response near the topological nodes

    Transverse force generated by an electric field and transverse charge imbalance in spin-orbit coupled systems

    Full text link
    We use linear response theory to study the transverse force generated by an external electric field and hence possible charge Hall effect in spin-orbit coupled systems. In addition to the Lorentz force that is parallel to the electric field, we find that the transverse force perpendicular to the applied electric field may not vanish in a system with an anisotropic energy dispersion. Surprisingly, in contrast to the previous results, the transverse force generated by the electric field does not depend on the spin current, but in general, it is related to the second derivative of energy dispersion only. Furthermore, we find that the transverse force does not vanish in the Rashba-Dresselhaus system. Therefore, the non-vanishing transverse force acts as a driving force and results in charge imbalance at the edges of the sample. The estimated ratio of the Hall voltage to the longitudinal voltage is ∼10−3\sim 10^{-3}. The disorder effect is also considered in the study of the Rashba-Dresselhaus system. We find that the transverse force vanishes in the presence of impurities in this system because the vertex correction and the anomalous velocity of the electron accidently cancel each other
    • …
    corecore