236 research outputs found

    Diagnostic category prevalence in 3 classification systems across the transition to the International Classification of Diseases, Tenth Revision, Clinical Modification

    Get PDF
    IMPORTANCE: On October 1, 2015, the US transitioned to the International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) for recording diagnoses, symptoms, and procedures. It is unknown whether this transition was associated with changes in diagnostic category prevalence based on diagnosis classification systems commonly used for payment and quality reporting. OBJECTIVE: To assess changes in diagnostic category prevalence associated with the ICD-10-CM transition. Design, Setting, and Participants: This interrupted time series analysis and cross-sectional study examined level and trend changes in diagnostic category prevalence associated with the ICD-10-CM transition and clinically reviewed a subset of diagnostic categories with changes of 20% or more. Data included insurance claim diagnoses from the IBM MarketScan Commercial Database from January 1, 2010, to December 31, 2017, for more than 18 million people aged 0 to 64 years with private insurance. Diagnoses were mapped using 3 common diagnostic classification systems: World Health Organization (WHO) disease chapters, Department of Health and Human Services Hierarchical Condition Categories (HHS-HCCs), and Agency for Healthcare Research and Quality Clinical Classification System (AHRQ-CCS). Data were analyzed from December 1, 2018, to January 21, 2020. EXPOSURES: US implementation of ICD-10-CM. Main Outcomes and Measures: Monthly rates of individuals with at least 1 diagnosis in a diagnostic classification category per 10 000 eligible members. Results: The analytic sample contained information on 2.1 billion enrollee person-months with 3.4 billion clinically assigned diagnoses; the mean (range) monthly sample size was 22.1 (18.4 to 27.1 ) million individuals. While diagnostic category prevalence changed minimally for WHO disease chapters, the ICD-10-CM transition was associated with level changes of 20% or more among 20 of 127 HHS-HCCs (15.7%) and 46 of 282 AHRQ-CCS categories (16.3%) and with trend changes of 20% or more among 12 of 127 of HHS-HCCs (9.4%) and 27 of 282 of AHRQ-CCS categories (9.6%). For HHS-HCCs, monthly rates of individuals with any acute myocardial infarction diagnosis increased 131.5% (95% CI, 124.1% to 138.8%), primarily because HHS added non-ST-segment-elevation myocardial infarction diagnoses to this category. The HHS-HCC for diabetes with chronic complications increased by 92.4% (95% CI, 84.2% to 100.5%), primarily from including new diabetes-related hypoglycemia and hyperglycemia codes, and the rate for completed pregnancy with complications decreased by 54.5% (95% CI, -58.7% to -50.2%) partly due to removing vaginal birth after cesarean delivery as a complication. CONCLUSIONS AND RELEVANCE: These findings suggest that the ICD-10-CM transition was associated with large prevalence changes for many diagnostic categories. Diagnostic classification systems developed using ICD-9-CM may need to be refined using ICD-10-CM data to avoid unintended consequences for disease surveillance, performance assessment, and risk-adjusted payments.R01 HS026485 - AHRQ HHS; UL1 TR000161 - NCATS NIH HHShttp://doi.org/10.1001/jamanetworkopen.2020.2280Published versio

    Mitochondrial DNA Copy Number Is Associated with Breast Cancer Risk

    Get PDF
    Mitochondrial DNA (mtDNA) copy number in peripheral blood is associated with increased risk of several cancers. However, data from prospective studies on mtDNA copy number and breast cancer risk are lacking. We evaluated the association between mtDNA copy number in peripheral blood and breast cancer risk in a nested case-control study of 183 breast cancer cases with pre-diagnostic blood samples and 529 individually matched controls among participants of the Singapore Chinese Health Study. The mtDNA copy number was measured using real time PCR. Conditional logistic regression analyses showed that there was an overall positive association between mtDNA copy number and breast cancer risk (Ptrend = 0.01). The elevated risk for higher mtDNA copy numbers was primarily seen for women with <3 years between blood draw and cancer diagnosis; ORs (95% CIs) for 2nd, 3rd, 4th, and 5th quintile of mtDNA copy number were 1.52 (0.61, 3.82), 2.52 (1.03, 6.12), 3.12 (1.31, 7.43), and 3.06 (1.25, 7.47), respectively, compared with the 1st quintile (Ptrend = 0.004). There was no association between mtDNA copy number and breast cancer risk among women who donated a blood sample ≥3 years before breast cancer diagnosis (Ptrend = 0.41). This study supports a prospective association between increased mtDNA copy number and breast cancer risk that is dependent on the time interval between blood collection and breast cancer diagnosis. Future studies are warranted to confirm these findings and to elucidate the biological role of mtDNA copy number in breast cancer risk. © 2013 Thyagarajan et al

    Development and assessment of a new framework for disease surveillance, prediction, and risk adjustment: the diagnostic items classification system

    Get PDF
    IMPORTANCE: Current disease risk-adjustment formulas in the US rely on diagnostic classification frameworks that predate the International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM). OBJECTIVE: To develop an ICD-10-CM-based classification framework for predicting diverse health care payment, quality, and performance outcomes. DESIGN SETTING AND PARTICIPANTS: Physician teams mapped all ICD-10-CM diagnoses into 3 types of diagnostic items (DXIs): main effect DXIs that specify diseases; modifiers, such as laterality, timing, and acuity; and scaled variables, such as body mass index, gestational age, and birth weight. Every diagnosis was mapped to at least 1 DXI. Stepwise and weighted least-squares estimation predicted cost and utilization outcomes, and their performance was compared with models built on (1) the Agency for Healthcare Research and Quality Clinical Classifications Software Refined (CCSR) categories, and (2) the Health and Human Services Hierarchical Condition Categories (HHS-HCC) used in the Affordable Care Act Marketplace. Each model's performance was validated using R 2, mean absolute error, the Cumming prediction measure, and comparisons of actual to predicted outcomes by spending percentiles and by diagnostic frequency. The IBM MarketScan Commercial Claims and Encounters Database, 2016 to 2018, was used, which included privately insured, full- or partial-year eligible enrollees aged 0 to 64 years in plans with medical, drug, and mental health/substance use coverage. MAIN OUTCOMES AND MEASURES: Fourteen concurrent outcomes were predicted: overall and plan-paid health care spending (top-coded and not top-coded); enrollee out-of-pocket spending; hospital days and admissions; emergency department visits; and spending for 6 types of services. The primary outcome was annual health care spending top-coded at 250000.RESULTS:Atotalof65901460personyearsweresplitinto90250 000. RESULTS: A total of 65 901 460 person-years were split into 90% estimation/10% validation samples (n = 6 604 259). In all, 3223 DXIs were created: 2435 main effects, 772 modifiers, and 16 scaled items. Stepwise regressions predicting annual health care spending (mean [SD], 5821 [$17 653]) selected 76% of the main effect DXIs with no evidence of overfitting. Validated R 2 was 0.589 in the DXI model, 0.539 for CCSR, and 0.428 for HHS-HCC. Use of DXIs reduced underpayment for enrollees with rare (1-in-a-million) diagnoses by 83% relative to HHS-HCCs. CONCLUSIONS: In this diagnostic modeling study, the new DXI classification system showed improved predictions over existing diagnostic classification systems for all spending and utilization outcomes considered.Published versio

    Enhanced Response to Drug-Induced QT Interval Lengthening in Patients with Heart Failure with Preserved Ejection Fraction

    Get PDF
    Background: Patients with heart failure (HF) with reduced ejection fraction demonstrate enhanced response to drug-induced QT interval lengthening and are at increased risk for torsades de pointes. The influence of HF with preserved ejection fraction (HFpEF) on response to drug-induced QT lengthening is unknown. Methods and results: We administered intravenous ibutilide 0.003 mg/kg to 10 patients with HFpEF and 10 age- and sex-matched control subjects without HF. Serial 12-lead electrocardiograms were obtained for determination of QT intervals. Demographics, maximum serum ibutilide concentrations, area under the serum ibutilide concentration vs time curves, and baseline Fridericia-corrected QT (QTF) (417 ± 14 vs 413 ± 15 ms, P = .54) were similar in the HFpEF and control groups. Area under the effect (QTFvs time) curve (AUEC) from 0 to 1.17 hours during and following the ibutilide infusion was greater in the HFpEF group (519 ± 19 vs 497 ± 18 ms·h, P= .04), as was AUEC from 0 to 8.17 hours (3576 ± 125 vs 3428 ± 161 ms·h, P = .03) indicating greater QTF interval exposure. Maximum QTF (454 ± 15 vs 443 ± 22 ms, P = .18) and maximum percent increase in QTF from baseline (8.2 ± 2.1 vs 6.7 ± 1.9%, P = .10) in the 2 groups were not significantly different. Conclusions: HFpEF is associated with enhanced response to drug-induced QT interval lengthening
    corecore