28,709 research outputs found

    Anomaly Matching in Gauge Theories at Finite Matter Density

    Full text link
    We investigate the application of 't Hooft's anomaly matching conditions to gauge theories at finite matter density. We show that the matching conditions constrain the low-energy quasiparticle spectrum associated with possible realizations of global symmetries.Comment: 11 pages, 1 figure, LaTeX. Section C is corrected and added reference

    Bias adjustment of satellite-based precipitation estimation using gauge observations: A case study in Chile

    Get PDF
    Satellite-based precipitation estimates (SPEs) are promising alternative precipitation data for climatic and hydrological applications, especially for regions where ground-based observations are limited. However, existing satellite-based rainfall estimations are subject to systematic biases. This study aims to adjust the biases in the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Cloud Classification System (PERSIANN-CCS) rainfall data over Chile, using gauge observations as reference. A novel bias adjustment framework, termed QM-GW, is proposed based on the nonparametric quantile mapping approach and a Gaussian weighting interpolation scheme. The PERSIANN-CCS precipitation estimates (daily, 0.04°×0.04°) over Chile are adjusted for the period of 2009–2014. The historical data (satellite and gauge) for 2009–2013 are used to calibrate the methodology; nonparametric cumulative distribution functions of satellite and gauge observations are estimated at every 1°×1° box region. One year (2014) of gauge data was used for validation. The results show that the biases of the PERSIANN-CCS precipitation data are effectively reduced. The spatial patterns of adjusted satellite rainfall show high consistency to the gauge observations, with reduced root-mean-square errors and mean biases. The systematic biases of the PERSIANN-CCS precipitation time series, at both monthly and daily scales, are removed. The extended validation also verifies that the proposed approach can be applied to adjust SPEs into the future, without further need for ground-based measurements. This study serves as a valuable reference for the bias adjustment of existing SPEs using gauge observations worldwide

    Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model

    Get PDF
    In general, there are no long-term meteorological or hydrological data available for karst river basins. The lack of rainfall data is a great challenge that hinders the development of hydrological models. Quantitative precipitation estimates (QPEs) based on weather satellites offer a potential method by which rainfall data in karst areas could be obtained. Furthermore, coupling QPEs with a distributed hydrological model has the potential to improve the precision of flood predictions in large karst watersheds. Estimating precipitation from remotely sensed information using an artificial neural network-cloud classification system (PERSIANN-CCS) is a type of QPE technology based on satellites that has achieved broad research results worldwide. However, only a few studies on PERSIANN-CCS QPEs have occurred in large karst basins, and the accuracy is generally poor in terms of practical applications. This paper studied the feasibility of coupling a fully physically based distributed hydrological model, i.e., the Liuxihe model, with PERSIANN-CCS QPEs for predicting floods in a large river basin, i.e., the Liujiang karst river basin, which has a watershed area of 58 270 km-2, in southern China. The model structure and function require further refinement to suit the karst basins. For instance, the sub-basins in this paper are divided into many karst hydrology response units (KHRUs) to ensure that the model structure is adequately refined for karst areas. In addition, the convergence of the underground runoff calculation method within the original Liuxihe model is changed to suit the karst water-bearing media, and the Muskingum routing method is used in the model to calculate the underground runoff in this study. Additionally, the epikarst zone, as a distinctive structure of the KHRU, is carefully considered in the model. The result of the QPEs shows that compared with the observed precipitation measured by a rain gauge, the distribution of precipitation predicted by the PERSIANN-CCS QPEs was very similar. However, the quantity of precipitation predicted by the PERSIANN-CCS QPEs was smaller. A post-processing method is proposed to revise the products of the PERSIANN-CCS QPEs. The karst flood simulation results show that coupling the post-processed PERSIANN-CCS QPEs with the Liuxihe model has a better performance relative to the result based on the initial PERSIANN-CCS QPEs. Moreover, the performance of the coupled model largely improves with parameter re-optimization via the post-processed PERSIANN-CCS QPEs. The average values of the six evaluation indices change as follows: the Nash-Sutcliffe coefficient increases by 14 %, the correlation coefficient increases by 15 %, the process relative error decreases by 8 %, the peak flow relative error decreases by 18 %, the water balance coefficient increases by 8 %, and the peak flow time error displays a 5 h decrease. Among these parameters, the peak flow relative error shows the greatest improvement; thus, these parameters are of page1506 the greatest concern for flood prediction. The rational flood simulation results from the coupled model provide a great practical application prospect for flood prediction in large karst river basins

    Violating conformal invariance: Two-dimensional clusters grafted to wedges, cones, and branch points of Riemann surfaces

    Get PDF
    We present simulations of 2-d site animals on square and triangular lattices in non-trivial geomeLattice animals are one of the few critical models in statistical mechanics violating conformal invariance. We present here simulations of 2-d site animals on square and triangular lattices in non-trivial geometries. The simulations are done with the newly developed PERM algorithm which gives very precise estimates of the partition sum, yielding precise values for the entropic exponent θ\theta (ZNμNNθZ_N \sim \mu^N N^{-\theta}). In particular, we studied animals grafted to the tips of wedges with a wide range of angles α\alpha, to the tips of cones (wedges with the sides glued together), and to branching points of Riemann surfaces. The latter can either have kk sheets and no boundary, generalizing in this way cones to angles α>360\alpha > 360 degrees, or can have boundaries, generalizing wedges. We find conformal invariance behavior, θ1/α\theta \sim 1/\alpha, only for small angles (α2π\alpha \ll 2\pi), while θconstα/2π\theta \approx const -\alpha/2\pi for α2π\alpha \gg 2\pi. These scalings hold both for wedges and cones. A heuristic (non-conformal) argument for the behavior at large α\alpha is given, and comparison is made with critical percolation.Comment: 4 pages, includes 3 figure

    Merging high-resolution satellite-based precipitation fields and point-scale rain gauge measurements-A case study in Chile

    Get PDF
    With high spatial-temporal resolution, Satellite-based Precipitation Estimates (SPE) are becoming valuable alternative rainfall data for hydrologic and climatic studies but are subject to considerable uncertainty. Effective merging of SPE and ground-based gauge measurements may help to improve precipitation estimation in both better resolution and accuracy. In this study, a framework for merging satellite and gauge precipitation data is developed based on three steps, including SPE bias adjustment, gauge observation gridding, and data merging, with the objective to produce high-quality precipitation estimates. An inverse-root-mean-square-error weighting approach is proposed to combine the satellite and gauge estimates that are in advance adjusted and gridded, respectively. The model is applied and tested with the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) estimates (daily, 0.04° × 0.04°) over Chile, for the 6 year period of 2009-2014. Daily observations from about 90% of collected gauges over the study area are used for model calibration; the rest of the gauged data are regarded as ground “truth” for validation. Evaluation results indicate high effectiveness of the model in producing high-resolution-precision precipitation data. Compared to reference data, the merged data (daily) show correlation coefficients, probabilities of detection, root-mean-square errors, and absolute mean biases that were consistently improved from the original PERSIANN-CCS estimates. The cross-validation evidences that the framework is effective in providing high-quality estimates even over nongauged satellite pixels. The same method can be applied globally and is expected to produce precipitation products in near real time by integrating gauge observations with satellite estimates

    Effect of Rosuvastatin on Acute Kidney Injury in Sepsis-Associated Acute Respiratory Distress Syndrome.

    Get PDF
    Background:Acute kidney injury (AKI) commonly occurs in patients with sepsis and acute respiratory distress syndrome (ARDS). Objective:To investigate whether statin treatment is protective against AKI in sepsis-associated ARDS. Design:Secondary analysis of data from Statins for Acutely Injured Lungs in Sepsis (SAILS), a randomized controlled trial that tested the impact of rosuvastatin therapy on mortality in patients with sepsis-associated ARDS. Setting:44 hospitals in the National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Patients:644 of 745 participants in SAILS who had available baseline serum creatinine data and who were not on chronic dialysis. Measurements:Our primary outcome was AKI defined using the Kidney Disease Improving Global Outcomes creatinine criteria. Randomization to rosuvastatin vs placebo was the primary predictor. Additional covariates include demographics, ARDS etiology, and severity of illness. Methods:We used multivariable logistic regression to analyze AKI outcomes in 511 individuals without AKI at randomization, and 93 with stage 1 AKI at randomization. Results:Among individuals without AKI at randomization, rosuvastatin treatment did not change the risk of AKI (adjusted odds ratio: 0.99, 95% confidence interval [CI]: 0.67-1.44). Among those with preexisting stage 1 AKI, rosuvastatin treatment was associated with an increased risk of worsening AKI (adjusted odds ratio: 3.06, 95% CI: 1.14-8.22). When serum creatinine was adjusted for cumulative fluid balance among those with preexisting stage 1 AKI, rosuvastatin was no longer associated worsening AKI (adjusted odds ratio: 1.85, 95% CI: 0.70-4.84). Limitations:Sample size, lack of urine output data, and prehospitalization baseline creatinine. Conclusion:Treatment with rosuvastatin in patients with sepsis-associated ARDS did not protect against de novo AKI or worsening of preexisting AKI

    Investigation of Corrosion in Aluminum/Adhesive Lap-Splices Using Pulse-Echo Ultrasonic Techniques

    Get PDF
    Corrosion can exist in any layer of a simple aluminum/adhesive lap-splice. For lap- splices where only one aluminum surface is accessible, first layer corrosion is corrosion that occurs on or under the accessible skin; and second layer corrosion is that which exists behind the adhesive/scrim layer on the upper or lower surface of the inaccessible skin. Many different nondestructive evaluation (NDE) techniques can detect first layer corrosion, and much progress has been made quantifying corrosion that exists in this layer[l]. Due to the layered nature of a lap-splice, second layer corrosion is much more difficult to detect, and also more difficult to quantify. Current maintenance procedures also make it difficult for researchers to obtain lap-splice corrosion samples from serviceable aircraft. The detection of corrosion in lap-splice assemblies has been given an important inspection priority by the airline industry, and regular inspection procedures have been developed to meet these new requirements. During maintenance, if corrosion is suspected in a lap-splice area, the area is opened up for further inspection by removing the rivets, adhesive and sometimes the paint. If the corrosion damage is beyond the manufacturer’s tolerances, the corroded area is cut out and patch-repaired; otherwise, the corrosion is removed by chemical or mechanical means, leaving a serviceable but thinner metal skin when the joint is reassembled[2]. In either case the original character of the lap-splice has been destroyed by the maintenance process, and its use for NDE purposes is lost. In this light, it becomes necessary for researchers to fabricate their own laboratory samples and compare these artificial samples with actual in-service samples

    Ultrasonic NDE Techniques and the Effects of Flaws on Mechanical Performance in Multi-Directionally Reinforced Textile Composites

    Get PDF
    Developmental efforts in composite technology have included a wide variety of secondary and primary structure in industries ranging from sporting goods to high performance aircraft. In addition to potentially significant weight savings, composites offer the potential benefits of increased fatigue life, corrosion resistance, and acquisition or life-cycle cost savings. Conventional two-dimensional composites, however, have poor interlaminar strengths and are susceptible to damage
    corecore