992 research outputs found

    Boron-containing organosilane polymers and ceramic materials thereof

    Get PDF
    The present invention relates to a polyorgano borosilane ceramic precursor polymer comprising a plurality of repeating units of the formula: (R(sup 1) single bond B)(sub p) being linked together at B by second units of the formula: single bond (R sup 2) single bond (Si single bond R sup 3) single bond (sub q), where R(sup 1) is a lower alkyl, cycloalkyl, phenyl, or (R(sup 2)R(sup 3) single bond Si single bond B single bond)(sub n) and R(sup 2) and R(sup 3) are each independently selected from hydrogen, lower alkyl, vinyl, cycloalkyl, or aryl, n is an integer between 1 and 100; p is an integer between 1 and 100; and q is an integer between 1 and 100. These materials are prepared by combining an organo borohalide of the formula R(sup 4) single bond B single bond (X sup 1) (sub 2) where R(sup 4) is selected from halogen, lower alkyl, cycloalkyl, or aryl, and an organo halosilane of the formula: R(sup 2)(R sup 3)Si(X sup 2)(sub 2) where R(sup 2) and R (sup 3) are each independently selected from lower alkyl, cycloalkyl, or aryl, and X(sup 1) and X(sup 2) are each independently selected from halogen, in an anhydrous aprotic solvent having a boiling point at ambient pressure of not greater than 160 C with in excess of four equivalents of an alkali metal, heating the reaction mixture and recovering the polyorgano borosilane. These silicon boron polymers are useful to generate high-temperature ceramic materials, such as SiC, SiB4, and B4C, upon thermal degradation above 600 C

    Preparation of B-trichloroborazine

    Get PDF
    The present invention relates to a method of preparing B-trichloroborazine. Generally, the method includes the combination of gaseous boron trichloride in an anhydrous aprotic organic solvent followed by addition of excess gaseous ammonia at ambient temperature or below. The reaction mixture is heated to about 100 to 140 C followed by cooling, removal of the solid ammonium chloride at ambient temperature, distillation of the solvent under vacuum if necessary at a temperature of up to about 112 C, and recovery of the B-trichloroborazine. Solvents include toluene, benzene, xylene, chlorinated hydrocarbons, chlorinated aromatic compounds, or mixtures thereof. Toluene is a preferred solvent. The process provides a convenient synthesis of a material which often decomposes on standing. B-trichloroborazine is useful in a number of chemical reactions, and particularly in the formation of high temperature inorganic polymers and polymer precursors

    Structural panels

    Get PDF
    Vinyl pyridines including vinyl stilbazole materials and vinyl styrylpyridine oligomer materials are disclosed. These vinylpyridines form copolymers with bismaleimides which copolymers have good fire retardancy and decreased brittleness. The cure temperatures of the copolymers are substantially below the cure temperatures of the bismaleimides alone. Reinforced composites made from the cured copolymers are disclosed as well

    Vinyl stilbazoles

    Get PDF
    Vinyl pyridines including vinyl stilbazole materials and vinyl styrylpyridine oligomer materials are disclosed. These vinylpyridines form copolymers with bismaleimides which copolymers have good fire retardancy and decreased brittleness. The cure temperatures of the copolymers are substantially below the cure temperatures of the bismaleimides alone. Reinforced composites made from the cured copolymers are disclosed as well

    Light-weight ceramic insulation

    Get PDF
    Ultra-high temperature, light-weight, ceramic insulation such as ceramic tile is obtained by pyrolyzing a siloxane gel derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes may contain also an effective amount of a mono- or trialkoxy silane to obtain the siloxane gel. The siloxane gel is dried at ambient pressures to form a siloxane ceramic precursor without significant shrinkage. The siloxane ceramic precursor is subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation, can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C. and is particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications

    Light-weight black ceramic insulation

    Get PDF
    Ultra-high temperature, light-weight, black ceramic insulation having a density ranging from about 0.12 g/cc. to 0.6 g/cc. such as ceramic tile is obtained by pyrolyzing siloxane gels derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes also may contain an effective amount of a mono- or trialkoxy silane to obtain the siloxane gels. The siloxane gels are dried at ambient temperatures and pressures to form siloxane ceramic precursors without significant shrinkage. The siloxane ceramic precursors are subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C., and particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications

    Boron-carbon-silicon polymers and the ceramic thereof

    Get PDF
    The present invention relates to a process for the production of an organoborosilicon preceramic polymer. The prepolymer is pyrolyzed to produce a ceramic article useful in high temperature (e.g., aerospace) or extreme environmental applications

    Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Get PDF
    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C

    Risk of respiratory depression with opioids and concomitant gabapentinoids.

    Get PDF
    Introduction:The combination of opioids and central nervous system depressants such as benzodiazepines and barbiturates has an additive effect on the frequency of oversedation and respiratory depression requiring naloxone use in hospitalized patients. Gabapentinoids (gabapentin and pregabalin) are frequently prescribed with opioids for their opioid-sparing and adjuvant analgesic effects. There is limited literature on the risk of respiratory depression due to the combination of opioids and gabapentinoids requiring naloxone administration. Methods:This retrospective study evaluated patients who were prescribed opioids and at least one dose of naloxone between March 1, 2014 and September 30, 2016. The primary objective of this study was to compare the frequency of respiratory depression among patients who received naloxone and opioids (non-gabapentinoid group) with those who received naloxone, opioids, and gabapentinoids (gabapentinoid group). Secondary objectives included comparing the association of oversedation, using the Pasero Opioid-induced Sedation Scale, and various risk factors with those in the gabapentinoid group. Results:A total of 153 patient episodes of naloxone administration (102 in the non-gabapentinoid and 51 in the gabapentinoid groups) in 125 unique patients were included in the study. For the primary objective, there were 33 episodes of respiratory depression associated with the non-gabapentinoid group (33/102=32.4%) versus 17 episodes of respiratory depression with the gabapentinoid group (17/51=33.3%) (p=0.128). Secondary objectives showed a significant association between respiratory depression and surgery in the previous 24 hours (p=0.036) as well as respiratory depression and age >65 years (p=0.031) for patients in the non-gabapentinoid group compared to the gabapentinoid group. Conclusion:There was no significant association of respiratory depression in the gabapentinoid group versus the non-gabapentinoid group. There was an increased risk of respiratory depression in the gabapentinoid group, specifically in patients who had surgery within the previous 24 hours

    Lightweight Ceramic Composition of Carbon Silicon Oxygen and Boron

    Get PDF
    Lightweight, monolithic ceramics resistant to oxidation in air at high temperatures are made by impregnating a porous carbon preform with a sol which contains a mixture of tetraethoxysilane, dimethyldiethoxysilane and trimethyl borate. The sol is gelled and dried on the carbon preform to form a ceramic precursor. The precursor is pyrolyzed in an inert atmosphere to form the ceramic which is made of carbon, silicon, oxygen and boron. The carbon of the preform reacts with the dried gel during the pyrolysis to form a component of the resulting ceramic. The ceramic is of the same size, shape and form as the carbon precursor. Thus, using a porous, fibrous carbon precursor, such as a carbon felt, results in a porous, fibrous ceramic. Ceramics of the invention are useful as lightweight tiles for a reentry spacecraft
    • …
    corecore