3,360 research outputs found

    New fermions on the line in topological symmorphic metals

    Full text link
    Topological metals and semimetals (TMs) have recently drawn significant interest. These materials give rise to condensed matter realizations of many important concepts in high-energy physics, leading to wide-ranging protected properties in transport and spectroscopic experiments. The most studied TMs, i.e., Weyl and Dirac semimetals, feature quasiparticles that are direct analogues of the textbook elementary particles. Moreover, the TMs known so far can be characterized based on the dimensionality of the band crossing. While Weyl and Dirac semimetals feature zero-dimensional points, the band crossing of nodal-line semimetals forms a one-dimensional closed loop. In this paper, we identify a TM which breaks the above paradigms. Firstly, the TM features triply-degenerate band crossing in a symmorphic lattice, hence realizing emergent fermionic quasiparticles not present in quantum field theory. Secondly, the band crossing is neither 0D nor 1D. Instead, it consists of two isolated triply-degenerate nodes interconnected by multi-segments of lines with two-fold degeneracy. We present materials candidates. We further show that triplydegenerate band crossings in symmorphic crystals give rise to a Landau level spectrum distinct from the known TMs, suggesting novel magneto-transport responses. Our results open the door for realizing new topological phenomena and fermions including transport anomalies and spectroscopic responses in metallic crystals with nontrivial topology beyond the Weyl/Dirac paradigm.Comment: 24 pages, 4 figures, and 1 tabl

    Type-II Topological Dirac Semimetals: Theory and Materials Prediction (VAl3 family)

    Full text link
    The discoveries of Dirac and Weyl semimetal states in spin-orbit compounds led to the realizations of elementary particle analogs in table-top experiments. In this paper, we propose the concept of a three-dimensional type-II Dirac fermion and identify a new topological semimetal state in the large family of transition-metal icosagenides, MA3 (M=V, Nb, Ta; A=Al, Ga, In). We show that the VAl3 family features a pair of strongly Lorentz-violating type-II Dirac nodes and that each Dirac node consists of four type-II Weyl nodes with chiral charge +/-1 via symmetry breaking. Furthermore, we predict the Landau level spectrum arising from the type-II Dirac fermions in VAl3 that is distinct from that of known Dirac semimetals. We also show a topological phase transition from a type-II Dirac semimetal to a quadratic Weyl semimetal or a topological crystalline insulator via crystalline distortions. The new type-II Dirac fermions, their novel magneto-transport response, the topological tunability and the large number of compounds make VAl3 an exciting platform to explore the wide-ranging topological phenomena associated with Lorentz-violating Dirac fermions in electrical and optical transport, spectroscopic and device-based experiments.Comment: 28 pages, 7 Figure

    CUSTOMER READINESS, MARKET ORIENTATION AND TRANSACTION FREQUENCY IN MOBILE BANKING SERVICE RECOVERY

    Get PDF
    This study investigates the effect of internet banking service recovery satisfaction on future intention toward using mobile banking, and examines transaction frequency as a moderator of this relationship. Moreover, this study applies customer participation in service recovery and service recovery experience as the influential factors of service recovery satisfaction. Questionnaires were obtained 419 respondents with internet banking and service recovery experience. The results of SEM analysis illustrate that both role clarity and ability of service recovery can affect the level of service recovery participation. Additionally, the internet banking service provider’s responsive and proactive customer orientation can influence customer service recovery experience, which further increases service recovery satisfaction. Recovery satisfaction can thus affect future intention toward using mobile banking. The moderating effect of transaction frequency was also confirmed. Theoretical and managerial implications are discussed

    Learning many-body Hamiltonians with Heisenberg-limited scaling

    Full text link
    Learning a many-body Hamiltonian from its dynamics is a fundamental problem in physics. In this work, we propose the first algorithm to achieve the Heisenberg limit for learning an interacting NN-qubit local Hamiltonian. After a total evolution time of O(ϵ1)\mathcal{O}(\epsilon^{-1}), the proposed algorithm can efficiently estimate any parameter in the NN-qubit Hamiltonian to ϵ\epsilon-error with high probability. The proposed algorithm is robust against state preparation and measurement error, does not require eigenstates or thermal states, and only uses polylog(ϵ1)\mathrm{polylog}(\epsilon^{-1}) experiments. In contrast, the best previous algorithms, such as recent works using gradient-based optimization or polynomial interpolation, require a total evolution time of O(ϵ2)\mathcal{O}(\epsilon^{-2}) and O(ϵ2)\mathcal{O}(\epsilon^{-2}) experiments. Our algorithm uses ideas from quantum simulation to decouple the unknown NN-qubit Hamiltonian HH into noninteracting patches, and learns HH using a quantum-enhanced divide-and-conquer approach. We prove a matching lower bound to establish the asymptotic optimality of our algorithm.Comment: 11 pages, 1 figure + 27-page appendi

    MAAIG: Motion Analysis And Instruction Generation

    Full text link
    Many people engage in self-directed sports training at home but lack the real-time guidance of professional coaches, making them susceptible to injuries or the development of incorrect habits. In this paper, we propose a novel application framework called MAAIG(Motion Analysis And Instruction Generation). It can generate embedding vectors for each frame based on user-provided sports action videos. These embedding vectors are associated with the 3D skeleton of each frame and are further input into a pretrained T5 model. Ultimately, our model utilizes this information to generate specific sports instructions. It has the capability to identify potential issues and provide real-time guidance in a manner akin to professional coaches, helping users improve their sports skills and avoid injuries.Comment: Accepted to the ACM Multimedia Asia 2023 Workshop on Intelligent Sports Technologies (WIST

    Hedgehog Spin-texture and Berry's Phase tuning in a Magnetic Topological Insulator

    Full text link
    Understanding and control of spin degrees of freedom on the surfaces of topological materials are key to future applications as well as for realizing novel physics such as the axion electrodynamics associated with time-reversal (TR) symmetry breaking on the surface. We experimentally demonstrate magnetically induced spin reorientation phenomena simultaneous with a Dirac-metal to gapped-insulator transition on the surfaces of manganese-doped Bi2Se3 thin films. The resulting electronic groundstate exhibits unique hedgehog-like spin textures at low energies, which directly demonstrate the mechanics of TR symmetry breaking on the surface. We further show that an insulating gap induced by quantum tunnelling between surfaces exhibits spin texture modulation at low energies but respects TR invariance. These spin phenomena and the control of their Fermi surface geometrical phase first demonstrated in our experiments pave the way for the future realization of many predicted exotic magnetic phenomena of topological origin.Comment: 38 pages, 18 Figures, Includes new text, additional datasets and interpretation beyond arXiv:1206.2090, for the final published version see Nature Physics (2012

    Evaluation Criteria and Women's Attainment of Elite STEM Education: Evidence from College Admission Records

    Get PDF
    Research on women's underrepresentation in science, technology, engineering, and mathematics (STEM) fields rarely addresses the roles of institutional gatekeepers and their screening criteria. Using full application records of the most prestigious university in Taiwan, we examine how the assessment criteria used by departments to determine admissions shape women's relative chance of entering elite STEM programs. Results from department fixed-effect models indicate that male-dominated STEM programs actually rate female applicants' written application materials and interviews higher. Female applicants are still less likely admitted to such programs than males because many STEM departments also use major-specific tests, which are not strictly curriculum based and impose great competitive pressure on selected students. Even the highest-achieving female students with a strong STEM interest perform worse than males in this type of tests, especially when the tests are given by male-dominated departments. Because of this gender performance gap, female students' chances of being admitted to elite STEM programs continue to be obstructed even as the college admission system became holistic and incorporated assessment criteria that could favor females

    Review on the Conflicts between Offshore Wind Power and Fishery Rights: Marine Spatial Planning in Taiwan

    Get PDF
    In recent years, Taiwan has firmly committed itself to pursue the green energy transition and a nuclear-free homeland by 2025, with an increase in renewable energy from 5% in 2016 to 20% in 2025. Offshore wind power (OWP) has become a sustainable and scalable renewable energy source in Taiwan. Maritime Spatial Planning (MSP) is a fundamental tool to organize the use of the ocean space by different and often conflicting multi-users within ecologically sustainable boundaries in the marine environment. MSP is capable of definitively driving the use of offshore renewable energy. Lessons from Germany and the UK revealed that MSP was crucial to the development of OWP. This paper aims to evaluate how MSP is able to accommodate the exploitation of OWP in Taiwan and contribute to the achievement of marine policy by proposing a set of recommendations. It concludes that MSP is emerging as a solution to be considered by government institutions to optimize the multiple use of the ocean space, reduce conflicts and make use of the environmental and economic synergies generated by the joint deployment of OWP facilities and fishing or aquaculture activities for the conservation and protection of marine environments.Peer Reviewe
    corecore