1,758 research outputs found

    Particular solutions of singularly perturbed partial differential equations with constant coefficients in rectangular domains, Part I. Convergence analysis

    Get PDF
    AbstractThe technique of separation of variables is used to derive explicit particular solutions for constant coefficient, singularly perturbed partial differential equations (PDEs) on a rectangular domain with Dirichlet boundary conditions. Particular solutions and exact solutions in closed form are obtained. An analysis of convergence for the series solutions is performed, which is useful in numerical solution of singularly perturbed differential equations for moderately small values of ε (e.g., ε=0.1–10−4). Two computational models are designed deliberately: Model I with waterfalls solutions and Model II with wedding-gauze solutions. Model II is valid for very small ε (e.g., ε=10−7), but Model I for a moderately small ε(=0.1–10−4). The investigation contains two parts. The first part, reported in the present paper, focuses on the convergence analysis and some preliminary numerical experiments for both of the models, while the second part, to be reported in a forthcoming paper, will illustrate the solutions near the boundary layers

    Integrating Chinese Herbal Medicine into Conventional Care Was Related to Lower Risk of Sarcopenia Among Rheumatid Arthritis Patients: A Retrospective, Population-Based Study

    Get PDF
    Objective: Sarcopenia is a frequently observed comorbidity of rheumatoid arthritis (RA) due to the chronic activation of the innate immune system. Accumulating evidence has indicated that Chinese herbal medicine (CHM) safely suppresses proinflammatory pathways and controls inflammation-associated disease, but its effect in reducing the risk of developing sarcopenia among RA subjects has not been established. We conducted a population-level cohort study to compare the sarcopenia risk in patients with RA who use or do not use CHM. Methods: Using claims from a nationwide insurance database, we recruited patients with newly diagnosed RA and without sarcopenia between 2002 and 2010. Propensity score matching was applied to randomly select sets of CHM users and non-CHM users to compare the sarcopenia risk until the end of 2013. The risk of new-onset sarcopenia was assessed using the Cox proportional hazards model. Results: As compared to non-CHM users, those receiving CHM treatment had a lower incidence of sarcopenia (7.69 vs 9.83 per 1000 person-years). CHM was correlated with a decreased chance of sarcopenia after controlling for potential covariates. Notably, use of CHM for more than two years may diminish the risk of getting sarcopenia by about 47% when taken as prescribed. Prescriptions of several herbal formulae may benefit the reduction of sarcopenia risk, such as Yan-Hu-Suo, Bei-Mu, Da-Huang, Huang Qin, Ping-Wei- San (PWS), Shu-Jing-Huo-Xue-Tang (SJHXT) and Chuan-Xiong-Cha-Tiao-San (CXCTS). Conclusion: This study produced new evidence as it is the first to show that the longer duration of CHM use was correlated to reduced risk of sarcopenia in a dose-dependent manner, implying that CHM treatment could be embraced as a routine care strategy for preventing sarcopenia

    The Establishment of Rapid Evaluating System for Surficial Inundations

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Use of Chinese Herbal Medicine Was Related to Lower Risk of Osteoporotic Fracture in Sarcopenia Patients: Evidence from Population-Based Health Claims

    Get PDF
    Introduction: With population aging, sarcopenia and its accompanying risk of osteoporotic fracture has drawn increased attention. Nowadays, while Chinese herbal medicine (CHM) is often used as complementary therapy for many medical conditions, its effect against likelihood of osteoporotic fracture among sarcopenia subjects was not fully elucidated yet. We therefore conducted a population-level study to compare osteoporotic fracture risk for sarcopenia persons with or without CHM use. Methods: Using the patient record from a nationwide insurance database, we recruited persons with newly diagnosed sarcopenia and simultaneously free of osteoporotic fracture between 2000 and 2010. Propensity score matching was then applied to randomly select sets of CHM users and non-CHM users. All of them were tracked until end of 2013 to measure the incidence and adjusted hazard ratios (HRs) for new new-onset fracture in multivariable Cox proportional hazards model. Results: Compared to non-CHM users, the CHM users indeed had a lower incidence of osteoporotic fracture (121.22 vs 156.61 per 1000 person-years). Use of CHM correlated significantly with a lower fracture likelihood after adjusting for potential covariates, and those receiving CHM treatment for more than two years experienced a remarkably lower risk by 73%. Uses of several herbal formulae were correlated to reduced risk of osteoporotic fracture, such as Caulis Spatholobi, Xuduan, Duzhong, Danshen, Shu-Jing-Huo-Xue- Tang, Du-Huo-Ji-Sheng-Tang, Shao-Yao-Gan-Cao-Tang, and Shen-Tong-Zhu-Yu -Tang. Conclusion: Our study depicted that cumulative CHM exposure was inversely associated with osteoporotic fracture risk in a duration-dependent manner, implying that CHM treatment may be embraced as routine care in preventing incident osteoporotic fracture

    Effects of Salvianolic Acid B on Protein Expression in Human Umbilical Vein Endothelial Cells

    Get PDF
    Salvianolic acid B (Sal B), a pure water-soluble compound extracted from Radix Salviae miltiorrhizae, has been reported to possess potential cardioprotective efficacy. To identify proteins or pathways by which Sal B might exert its protective activities on the cardiovascular system, two-dimensional gel electrophoresis-based comparative proteomics was performed, and proteins altered in their expression level after Sal B treatment were identified by MALDI-TOF MS/MS. Human umbilical vein endothelial cells (HUVECs) were incubated at Sal B concentrations that can be reached in human plasma by pharmacological intervention. Results indicated that caldesmon, an actin-stabilizing protein, was downregulated in Sal B-exposed HUVECs. Proteins that showed increased expression levels upon Sal B treatment were vimentin, T-complex protein 1, protein disulfide isomerase, tropomyosin alpha, heat shock protein beta-1, UBX domain-containing protein 1, alpha enolase, and peroxiredoxin-2. Additionally, Sal B leads to increased phosphorylation of nucleophosmin in a dose-dependent manner and promotes proliferation of HUVECs. We found that Sal B exhibited a coordinated regulation of enzymes and proteins involved in cytoskeletal reorganization, oxidative stress, and cell growth. Our investigation would provide understanding to the endothelium protection information of Sal B

    Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose

    Get PDF
    Background: Lignocellulosic biomass is one of earth's most abundant resources, and it has great potential for biofuel production because it is renewable and has carbon-neutral characteristics. Lignocellulose is mainly composed of carbohydrate polymers (cellulose and hemicellulose), which contain approximately 75 % fermentable sugars for biofuel fermentation. However, saccharification by cellulases is always the main bottleneck for commercialization. Compared with the enzyme systems of fungi, bacteria have evolved distinct systems to directly degrade lignocellulose. However, most reported bacterial saccharification is not efficient enough without help from additional β-glucosidases. Thus, to enhance the economic feasibility of using lignocellulosic biomass for biofuel production, it will be extremely important to develop a novel bacterial saccharification system that does not require the addition of β-glucosidases. Results: In this study, a new thermophilic bacterium named Ruminiclostridium thermocellum M3, which could directly saccharify lignocellulosic biomass, was isolated from horse manure. The results showed that R. thermocellum M3 can grow at 60 °C on a variety of carbon polymers, including microcrystalline cellulose, filter paper, and xylan. Upon utilization of these substrates, R. thermocellum M3 achieved an oligosaccharide yield of 481.5 ± 16.0 mg/g Avicel, and a cellular β-glucosidase activity of up to 0.38 U/mL, which is accompanied by a high proportion (approximately 97 %) of glucose during the saccharification. R. thermocellum M3 also showed potential in degrading natural lignocellulosic biomass, without additional pretreatment, to oligosaccharides, and the oligosaccharide yields using poplar sawdust, corn cobs, rice straw, and cornstalks were 52.7 ± 2.77, 77.8 ± 5.9, 89.4 ± 9.3, and 107.8 ± 5.88 mg/g, respectively. Conclusions: The newly isolated strain R. thermocellum M3 degraded lignocellulose and accumulated oligosaccharides. R. thermocellum M3 saccharified lignocellulosic feedstock without the need to add β-glucosidases or control the pH, and the high proportion of glucose production distinguishes it from all other known monocultures of cellulolytic bacteria. R. thermocellum M3 is a potential candidate for lignocellulose saccharification, and it is a valuable choice for the refinement of bioproducts

    X-linked hyper-IgM syndrome with CD40LG mutation: Two case reports and literature review in Taiwanese patients

    Get PDF
    Hyper-IgM syndrome (HIGM) is a rare primary immunodeficiency disorder characterized by elevated or normal serum IgM and decreased IgG, IgA, and IgE due to defective immunoglobulin class switching. X-linked HIGM (XHIGM, HIGM1) is the most frequent type, is caused by mutations in the CD40 ligand gene, and is regarded as a combined T and B immunodeficiency. We report an 18-year-old male who was diagnosed initially with hypogammaglobulinemia in infancy, but developed repeated pneumonia, sepsis, cellulitis, perianal abscess, pericarditis, and bronchiectasis despite regular intravenous immunoglobulin replacement therapy. The patient died at age 18 years due to pneumonia and tension pneumothorax. Mutation analysis revealed CD40L gene mutation within Exon 5 at nucleotide position 476 (cDNA 476G > A). This nonsense mutation predicted a tryptophan codon (TGG) change to a stop codon (TGA) at position 140 (W140X), preventing CD40L protein expression. Sequence analysis in the family confirmed a de novo mutation. The second case of 6-month-old male infant presented as Pneumocystis jiroveci pneumonia and acute respiratory distress syndrome. Gene analysis of the CD40L gene revealed G to C substitution in Intron 4 (c.409 + 5G > C) and mother was a carrier. Hematopoietic stem cell transplantation, the only cure for XHIGM, was arranged in the second case
    corecore