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Abstract

The technique of separation of variables is used to derive explicit particular solutions for constant coe(cient,
singularly perturbed partial di&erential equations (PDEs) on a rectangular domain with Dirichlet boundary
conditions. Particular solutions and exact solutions in closed form are obtained. An analysis of convergence
for the series solutions is performed, which is useful in numerical solution of singularly perturbed di&erential
equations for moderately small values of � (e.g., � = 0:1–10−4). Two computational models are designed
deliberately: Model I with waterfalls solutions and Model II with wedding-gauze solutions. Model II is valid
for very small � (e.g., � = 10−7), but Model I for a moderately small � (=0:1–10−4). The investigation
contains two parts. The =rst part, reported in the present paper, focuses on the convergence analysis and
some preliminary numerical experiments for both of the models, while the second part, to be reported in a
forthcoming paper, will illustrate the solutions near the boundary layers.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, singularly perturbed di&erential equations [4] have drawn a great deal of attention from
scientists, because of the presence of boundary and interior layers in the exact solutions which
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causes great di(culties in the numerical solution of this type of equations. Although a number of
numerical methods have been developed, see, for example, [12,11,14–16], the results are still not
very satisfactory, compared with those for the point singularities in elliptic boundary value problems.
One reason is that the behaviors of the layers in solutions of such a problem are not very clear in
physics and mathematics. This is in contrast to the point singularities of, say, a Laplace’s equation,
to which the exact solutions are well known for corners, interface intersections and in=nities. Hence,
a lot of e(cient numerical methods have been developed, see [9], because typical models for these
problems have been set up for us to test our numerical methods and to compare our results with
others’. This paper is devoted to a fundamental issue: to seek particular solutions of the singularly
perturbed di&erential equations, which may have an impact on the further research in this =elds.

Using the technique of separation of variables [3,6,7], we are able to =nd the explicit analytic
solutions to singularly perturbed, constant coe(cient 2nd order PDEs on rectangles, sectors, or on
some simple unbounded domains. Moreover, the exact solutions in closed form can also be found for
three-dimensional singularly perturbed PDEs with constant coe(cients and on some simple domains
such as cubes, cylinders and spheres. Such simple cases do not prevent them from being testing
models for numerical methods. Take the point singularities for example. Motz’s problem [13] is a
typical benchmark of singularity problems which is de=ned by the Laplace equation in a rectangle
with the mixed Dirichlet and Neumann boundary conditions along the x axis. The singularity in the
solution of Motz’s problem behaves like u = O(r1=2) as 0¡r�1. The exact solutions of Motz’s
problem provided in [9] help exploration on new and e(cient numerical methods.

The motivation of this paper comes partially from the research experiments on the point singu-
larity problems in [9], which are PDEs involving angular singularity, interface singularity or in=nity
singularity. We also refer simply the layer singularity problems to the singularly perturbed di&erential
equations (cf. [11,14]). Since the derivatives are unbounded near the singularity when � → 0, the
traditional =nite element methods (FEMs) and =nite di&erence methods (FDMs) provide numerical
solutions with poor accuracies. Though the layer singularity problems are more challenging and more
di(culties to solve than the point singularity problems, because of their complexities, we may still
learn some from the point singularity problems, in order to develop new numerical methods for the
layer singularity problems. In fact, most of numerical methods for point singularity problems may
fall into two categories:

Case I: Local re=nements of partitions in FEMs and FDMs, based on the knowledge of singularity
and regularity of the solutions. Particular and exact solutions given in this paper may provide such
knowledge even the solution domains discussed are rather simple.

Case II: Use of particular solutions in FEMs, partially or completely, see [9]. The particular
solutions explored in this paper are a must for constructing a numerical method of this type. For
instance, to resemble the penalty combination for the point singularity problems in [8], we may
choose the particular solutions developed in this paper near a singular layer, use a traditional FEM
in the rest domain, and employ the penalty coupling to combine both. New numerical methods can
also be developed for the singularly perturbed di&erential equations, as reported in [10].

This paper is organized as follows. In the next section, we describe basic approaches to =nding
particular solutions, which consist of the methods for problems with and without the zero corner
conditions. In Section 3, we discuss convergence properties of the series solutions. In Sections 4
and 5, we propose two computational models (called Models I and II) and present some numerical
results for these models.
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2. Basic approaches

Consider homogeneous, singularly perturbed PDEs with the Dirichlet boundary condition of the
following form

Lu=
9
9x

(
−�

9
9x u+ 	u

)
+
9
9y

(
−�

9
9y u+ �u

)
+ cu= 0 in S; (1)

u|� = g on �; (2)

where S is the rectangle S={(x; y); 0¡x¡ 2�; 0¡y¡ 2�} and � is its boundary. The parameters
�¿ 0; 	; � and c(¿ 0) are all constants, but � may be very small, i.e., 0¡��1. In this paper, we
assume without loss of generality,

	¿ 0; �¿ 0: (3)

In this case the solution to the problem contains two boundary layers along the boundary segments
at x=2� and y=2� respectively. Since all �; 	; � and c are constants, it is possible to =nd explicit
solutions to (1)–(2) by means of the separation of variables, as given in the next section.

2.1. Particular solutions

For (1) and (2), let the Dirichlet boundary conditions along four edges of S be given by (see
Fig. 1)

u(x; 0) = g(x; 0) = g1(x); u(x; 2�) = g(x; 2�) = g2(x);

u(0; y) = g(0; y) = g3(y); u(2�; y) = g(2�; y) = g4(y); (4)
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Fig. 1. A square solution domain.
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where the function g is continuous at the four corners so that the corner continuity conditions hold:

g1(0) = g3(0); g1(2�) = g4(0);

g3(2�) = g2(0); g2(2�) = g4(2�):

Suppose that the boundary conditions at the four corners are all zero, i.e.,

gi(0) = gi(2�) = 0 i = 1; 2; 3; 4: (5)

In what follows we refer (5) to as the corner zero conditions. Now we split the solution to (1) and
(2) into four parts, u=

∑4
i=1 u(i), such that u(i) satis=es

Lu(i) = 0 in S; (6)

u(i)|�i = gi; u(i)|9S\�i
= 0; (7)

for i = 1; 2; 3; 4, where 9S =
⋃4

i=1 �i, �1 = OA, �2 = CB, �3 = OC and �4 = AB. Fig. 2 illustrates
the case for u(2).

Based on (5), we investigate explicit solutions to u(i) in this subsection using the technique of
separation of variables, which was =rst proposed in Grunberg [6]. In what follows we use the case
for u(2) to demonstrate this process.

Consider u(2) of the form u(2) = R(x)T (y). We have from Lu(2) = 0,

−�
R′′(x)
R

+ 	
R′(x)
R

= �
T ′′(y)

T
− �

T ′(y)
T

− c=: �:

From this we see that � must be a constant. Assuming �¿ 0, we have from the above equation

−�R′′(x) + 	R′(x) = �R(x); x∈ [0; 2�];

R(0) = R(2�) = 0; (8)
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and

− �T ′′(y) + �T ′(y) + cT (y) =−�T (y); y∈ [0; 2�]: (9)

Under the transformation

R(x) = C exp
( 	
2�

x
)
v(x); (10)

Eq. (8) can be rewritten as

− �v′′ =
(
� − 	2

4�

)
v; v(0) = v(2�) = 0: (11)

There are three cases for the values of (� − 	2=4�).
Case I. (� − 	2=4�)¿ 0. Let

1
�

(
� − 	2

4�

)
= k2; (12)

we obtain from (11)

v′′ + k2v= 0; v(0) = v(2�) = 0:

The particular solutions to this equation are

v= C sin kx; k = 1; 2; : : : : (13)

Obviously, for this case, � can be obtained from (12)

� = �k2 +
	2

4�
; k = 1; 2; : : : : (14)

Case II. (� − 	2=4�)¡ 0. Let

1
�

(
	2

4�
− �

)
= t2; k = 1; 2; : : : :

Then (11) becomes

v′′ − t2v= 0; v(0) = v(2�) = 0: (15)

The particular solutions are given by

v= a sinh(tx) + b cosh(tx): (16)

Applying the homogeneous boundary conditions in (15) to the above yields a = b = 0. Therefore,
(16) is a trivial solution, i.e., v ≡ 0.

Case III. (� − 	2=4�) = 0. Then we have

v′′ = 0; v(0) = v(2�) = 0:

This leads to the solution v=ax+b, which is also a trivial solution due to the homogeneous boundary
conditions.

In summary, for the above three cases, the nontrivial solutions occur only in Case I. Now, consider
(9), where � is given in (14):

�k = �k2 +
	2

4�
; k = 1; 2; : : : :
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Using the transformation

T (y) = C exp
(

�
2�

y
)

w(y); (17)

we obtain from (9)

− �w′′(y) +
(
�k +

�2

4�
+ c

)
w(y) = 0: (18)

Denote

tk =
{
1
�

(
�k +

�2

4�
+ c

)}1=2

=
{
k2 +

	2 + �2 + 4�c
4�2

}1=2

: (19)

Particular solutions to (18) are given by

w = ak sinh(tky) + bk cosh(tky); k = 1; 2; : : : : (20)

Hence, from (10), (13), (17) and (20), we obtain the following particular solutions to (6) as i= 2:

u(2) = exp
(
	x + �y

2�

) ∞∑
k=1

{ak sinh(tky) + bk cosh(tky)} sin kx; (21)

where tk is given in (19).
Note that the coe(cients ak and bk can be found from the boundary condition (7). In fact, since

u(2)(x; 0) = 0, we have from (21)

0 = u(2)(x; 0) = exp
(	x
2�

) ∞∑
k=1

bk sin kx;

yielding

bk =
1
�

∫ 2�

0
u(2)(x; 0) exp

(
− 	
2�

x
)
sin kx dx = 0; ∀k:

Also for y = 2�, we obtain from (21)

g2(x) = u(2)(x; 2�) = exp
(
	x + 2��

2�

) ∞∑
k=1

ak sinh(2�tk) sin kx;

which gives

ak =
1
�

1
sinh(2�tk)

∫ 2�

0
g2(x) exp

(
−	x + 2��

2�

)
sin kx dx:

Hence solution (21) reduces to

u(2) = exp
(
	x + �y

2�

) ∞∑
k=1

ak sinh(tky) sin kx: (22)

When 	¿ 0, the layer may occur at x = 2�. In this case we rewrite the solutions (22) as

u(2) = exp
(−	(2�− x) + �y

2�

) ∞∑
k=1

ak sinh(tky) sin kx; (23)
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where

ak =
1
�

1
sinh(2�tk)

∫ 2�

0
g2(x) exp

(
	(2�− x)− 2��

2�

)
sin kx dx: (24)

Similarly, it can be shown that the solution u(1) in (6) is given by

u(1) = exp
(−	(2�− x) + �y

2�

) ∞∑
k=1

bk sinh(tk(2�− y)) sin kx;

where

bk =
1
�

1
sinh(2�tk)

∫ 2�

0
g1(x) exp

(
	(2�− x)

2�

)
sin kx dx: (25)

Furthermore, u(3) and u(4) have the following representations, respectively,

u(3) = exp
(
	x − �(2�− y)

2�

) ∞∑
k=1

dk sinh(tk(2�− x)) sin ky; (26)

u(4) = exp
(
	x − �(2�− y)

2�

) ∞∑
k=1

ck sinh(tkx) sin ky; (27)

where

ck =
1
�

1
sinh(2�tk)

∫ 2�

0
g4(y) exp

(−	2�+ �(2�− y)
2�

)
sin ky dy; (28)

dk =
1
�

1
sinh(2�tk)

∫ 2�

0
g3(y) exp

(
�(2�− y)

2�

)
sin ky dy: (29)

In summary, we have the following solution to (6) and (7) satisfying the corner zero conditions (5):

u=
4∑

i=1

u(i)

= exp
(−	(2�− x) + �y

2�

) ∞∑
k=1

{ak sinh(tky) + bk sinh(tk(2�− y))} sin kx

+exp
(
	x − �(2�− y)

2�

) ∞∑
k=1

{ck sinh(tkx) + dk sinh(tk(2�− x))} sin ky; (30)

where the coe(cients ak ; bk ; ck and dk are given in (24), (25), (28) and (29), respectively.

2.2. The case that the corner zero conditions are not satis9ed

Let us consider a transition function Ou satisfying

L Ou= 0 in S; (31)
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Ou(0; 0) = g(0; 0); Ou(2�; 0) = g(2�; 0);

Ou(0; 2�) = g(0; 2�); Ou(2�; 2�) = g(2�; 2�): (32)

The di&erence (u− Ou) satis=es (1) and the corner zero conditions (5). In fact, the particular solutions
in Cases II and III in the previous subsection may be chosen to satisfy the conditions in (32).
First, consider the solutions in Case III, i.e.,

1
�

(
�0 − 	2

4�

)
= 0;

from which we have

�0 =
	2

4�
and t0 =

1
2�

(	2 + �2 + 4�c)1=2:

We have the particular solution,

Ou=exp
(−	(2�− x) + �y

2�

)
{(a+ Oax) sinh(t0y) + (b+ Obx) sinh(t0(2�− y))}

+exp
(
	x − �(2�− y)

2�

)
{(c + Ocy) sinh(t0x) + (d+ Ody) sinh(t0(2�− x))}: (33)

This expression contains eight unknown coe(cients a; b; c; d; Oa; Ob; Oc and Od, while there are only four
conditions in (32) to be satis=ed by Ou. Therefore, four of these eight coe(cients are free. If set let
c = Oc = d= Od= 0, then the other four coe(cients can be determined by (32) as

a=
u(2�; 2�)

2� sinh(2�t0)
exp

(
−��

�

)
; Oa=

u(0; 2�)
2� sinh(2�t0)

exp
(
(	− �)�

�

)
;

b=
u(2�; 0)

2� sinh(2�t0)
; Ob=

u(0; 0)
2� sinh(2�t0)

exp
(	�

�

)
:

The particular solution in (33), denoted as Ou 1, then becomes

Ou 1 =
1

2� sinh(2�t0)

{[
u(2�; 2�)x exp

(
−	(2�− x) + �(2�− y)

2�

)

+ u(0; 2�)(2�− x) exp
(
	x − �(2�− y)

2�

)]
sinh(t0y)

+
[
u(2�; 0)x exp

(−	(2�− x) + �y
2�

)
+ u(0; 0)(2�− x) exp

(
	x + �y

2�

)]

×sinh(t0(2�− y))
}

:
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Similarly, if we choose a= Oa= b= Ob= 0 in (33) using (32), we have another particular solution

Ou 2 =
1

2� sinh(2�t0)

{[
u(2�; 2�)y exp

(
−	(2�− x) + �(2�− y)

2�

)

+ u(2�; 0)(2�− y) exp
(−	(2�− x) + �y

2�

)]
sinh(t0x)

+
[
u(0; 2�)y exp

(
	x − �(2�− y)

2�

)
+ u(0; 0)(2�− y) exp

(
	x + �y

2�

)]

·sinh(t0(2�− x))
}

:

It is also possible to derive a symmetric solution of the form Ou= 1
2( Ou 1 + Ou 2).

Since the particular solutions in Case II for �¡	2=4� also satisfy equation Lu= 0, they can be
chosen to satisfy the corner conditions (32) as well. Let � = 	2=8�, we have from Case II,

v= a sinh(t�x) + b sinh(t�(2�− x));

where

t� =
{
1
�

(
	2

4�
− �

)}1=2

=
1

2
√
2

	
�
:

Denote p� = (�2 − 1
2	

2 + 4�c)=4�2. When p� ¿ 0, the particular solution is given by

Ou 3 = exp
(−	(2�− x) + �y

2�

)
(a� sinh(t�x) + b� sinh(t�(2�− x)))

×(c� sinh(
√
p�y) + d� sinh(

√
p�(2�− y))):

When p� ¡ 0, the particular solution is

Ou 3 = exp
(−	(2�− x) + �y

2�

)
(a� sinh(t�x) + b� sinh(t�(2�− x)))

×(c� sin(
√−p�y) + d� sin(

√−p�(2�− y)));

and, when p� = 0,

Ou 3 = exp
(−	(2�− x) + �y

2�

)
(a� sinh(t�x) + b� sinh(t�(2�− x)))

×(c�y + Oc�(2�− y));

where a�; b�; c�; d� and Oc� are constants.
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3. Convergence

For simplicity, we consider the case of u= u(2) in (22) with a slightly di&erent form, i.e.,

u(x; y) = exp
(
	x + �y

2�

) ∞∑
k=1

ak
sinh(tky)
sinh(2�tk)

sin kx; (x; y)∈ [0; 2�]2: (34)

When y = 2�, the coe(cients in (34) are

ak =
1
�

∫ 2�

0
g2(t) exp

(
−	t + 2��

2�

)
sin kt dt: (35)

Using (35) we see that (34) can be rewritten as

u(x; y) =
∞∑
k=1

Ak
sinh(tky)
sinh(2�tk)

sin kx; (x; y)∈ [0; 2�]2; (36)

where

Ak =
1
�

∫ 2�

0
g2(t) exp

(
	(x − t) + �(y − 2�)

2�

)
sin kt dt

=:
∫ 2�

0
f(t) sin kt dt; (37)

and the function f(t) is given by

f(t) = g2(t)
1
�
exp

(
	(x − t) + �(y − 2�)

2�

)
; (x; y)∈ [0; 2�]2: (38)

Here g2(0) = g2(2�) = 0 and g2(t) is bounded on [0; 2�].
Before we derive convergence rates for (34), let us =rst make two assumptions on the function

f(t) in (38).

A1. The function f(t) satis=es the corner zero conditions:

f(0) = f(2�) = 0:

A2. The nth derivatives of function f(x) have the bounds,

|f(n)(t)|6 C
�n

for n= 0; 1; 2; : : : ; (39)

where C is a generic positive constant independent of � and n.
De=ne the partial sum of (36) by

uN (x; y) =
N∑

k=1

Ak
sinh(tky)
sinh(2�tk)

sin kx; (x; y)∈ [0; 2�]2: (40)

The upper bounds on the absolute errors in the solution and its derivatives are contained in the
following theorem.
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Theorem 3.1. Let the function f(t) satisfy the assumptions A1 and A2, and suppose that N¿ 1
� .

Then, there exist the bounds,

|u− uN |6 C
�2N 2 exp

(
	(x − 2�) + �(y − 2�)

2�

)
exp

(	�
�

− tN (2�− y)
)
; (41)

|ux − (uN )x|6 C
�2N

exp
(
	(x − 2�) + �(y − 2�)

2�

)
exp

(	�
�

− tN (2�− y)
)
; (42)

|uy − (uN )y|6 C
�2N

exp
(
	(x − 2�) + �(y − 2�)

2�

)
exp

(	�
�

− tN (2�− y)
)
; (43)

where tN is given in (19) and C is a generic positive constant, independent of � and N .

Proof. Integrating by parts and using A1, we have from (37)

Ak =
∫ 2�

0
f(t) sin kt dt =−1

k

∫ 2�

0
f(t) d cos kt

=−1
k
[f(t) cos kt]2�0 +

1
k

∫ 2�

0
f′(t) cos kt dt

=−1
k
[f(2�)− f(0)] +

1
k

∫ 2�

0
f′(t) cos kt dt =

1
k

∫ 2�

0
f′(t) cos kt dt:

Integrating the last term in the above by parts twice gives

Ak =
1
k2

∫ 2�

0
f′(t) d sin kt =

1
k2

[f′(t)sin kt]2�0 − 1
k2

∫ 2�

0
f′′(t) sin kt dt

=
1
k3

∫ 2�

0
f′′(t) d cos kt =

1
k3

[f′′(t) cos kt]2�0 − 1
k3

∫ 2�

0
cos kt df′′(t): (44)

From (44), A2 and the de=nition of f, we have

|Ak |6 C
k3�2

∣∣∣∣exp
(
	(x − 2�) + �(y − 2�)

2�

)
+ exp

(
	x + �(y − 2�)

2�

)∣∣∣∣
+

C
k3

∫ 2�

0

1
�3

exp
(
	(x − t) + �(y − 2�)

2�

)
dt

6
C

k3�2
exp

(
	x + �(y − 2�)

2�

)
+

C
k3

∫ 2�

0

1
�2

d
{
exp

(
	(x − t) + �(y − 2�)

2�

)}

6
C

k3�2
exp

(
	(x − 2�) + �(y − 2�)

2�

)
exp

(	�
�

)
: (45)
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Moreover, when k¿N + 1¿N ,
∣∣∣∣ sinh(tky)sinh(2tk�)

∣∣∣∣ = exp(−tk(2�− y))
(
1− exp(−2tky)
1− exp(−4tk�)

)

6 exp(−tk(2�− y))6 exp(−tN (2�− y)): (46)

From (36), (40) and (46) we obtain

|u(x; y)− uN (x; y)|6
∞∑

k=N+1

|Ak |
∣∣∣∣ sinh(tky)sinh(2tk�)

∣∣∣∣ |sinkx|

6 exp(−tN (2�− y))
∞∑

k=N+1

|Ak |: (47)

Combining (45) and (47) leads to the =rst result (41) by noting
∑∞

k=N+1(1=k
3)6C=N 2.

Next, let us consider the bounds on the errors in the derivatives. Noting Ak = Ak(x; y) we have

ux =
9u
9x =

∞∑
k=1

Ak
sinh(tky)
sinh(2tk�)

( 	
2�

sin kx + k cos kx
)
; (x; y)∈ [0; 2�]2;

(uN )x =
N∑

k=1

Ak
sinh(tky)
sinh(2tk�)

( 	
2�

sin kx + k cos kx
)
: (48)

Following the arguments in (47), we obtain from the assumption N¿ 1=� and (45)

|ux − (uN )x|6 exp(−tN (2�− y))
∞∑

k=N+1

(
k +

1
2�

)
|Ak |

6C exp(−tN (2�− y))
∞∑

k=N+1

k|Ak |

6
C
�2N

exp
(
	(x − 2�) + �(y − 2�)

2�

)
exp

(	�
�

− tN (2�− y)
)
: (49)

This is the second result (42).
Third, we have

uy =
9u
9y =

∞∑
k=1

Ak

{
sinh(tky)
sinh(2tk�)

�
2�

+
cosh(tky)
sinh(2tk�)

tk

}
sin kx; (50)

(uN )y =
9(uN )
9y =

N∑
k=1

Ak

{
sinh(tky)
sinh(2tk�)

�
2�

+
cosh(tky)
sinh(2tk�)

tk

}
sin kx: (51)
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Since for k¿N + 1¿N , there exist the bounds,

cosh(tky)
sinh(2tk�)

= exp(−tk(2�− y))
(
1 + exp(−2tky)
1− exp(−4tk�)

)

6 3 exp(−tk(2�− y))6 3 exp(−tN (2�− y)); (52)

and

tk =

√
k2 +

	2 + �2 + 4�c
4�2

6 k +
	+ � + 2

√
�c

2�
6

(
k +

C
�

)
: (53)

Hence we obtain from N¿ 1=�

|uy − (uN )y|6
∞∑

k=N+1

|Ak |
{∣∣∣∣ sinh(tky)

sinh(2tk�)

∣∣∣∣ �
2�

+
∣∣∣∣ cosh(tky)
sinh(2tk�)

∣∣∣∣× tk

}
| sin kx|

6C exp(−tN (2�− y))
∞∑

k=N+1

(
k +

1
�

)
|Ak |

6C exp(−tN (2�− y))
∞∑

k=N+1

k|Ak |

6
C
�2N

exp
(
	(x − 2�) + �(y − 2�)

2�

)
exp

(	�
�

− tN (2�− y)
)
: (54)

This is the third result (43). This completes the proof of Theorem 3.1.

When �¿ 0 is given and =xed, Theorem 3.1 displays the convergence of the solutions and deriva-
tives when N → ∞. For real computation, suppose that the maximal errors of solutions and deriva-
tives are less than % over the entire S = [0; 2�]2, then from Theorem 3.1 we may require

C
�2N 2 exp

(	�
�

− tN (2�− y)
)
6 %;

C
�2N

exp
(	�

�
− tN (2�− y)

)
6 %;

respectively. Solving these gives

N¿

√
C

�
√
%
exp

(
	�
2�

− 1
2
tN (2�− y)

)
; N¿

C
�2%

exp
(	�

�
− tN (2�− y)

)
: (55)

When � is small and y=2�, the parameter N needed is large, which is prohibitive for computing the
solutions numerically. Therefore, the series solution can be used only for problems with a moderately
small value of �. The above worst estimates for N happen only in the approximation of the derivatives
at corner (2�; 2�), while the solutions at (2�; 2�) are known from the Dirichlet boundary condition.

To improve the convergence, we give another assumption.

A3. Let the periodic conditions satisfy

f(2‘)(0) = f(2‘)(2�); ‘¿ 1;

where f(t) is given in (38).



194 Z.-C. Li et al. / Journal of Computational and Applied Mathematics 166 (2004) 181–208

We have following theorem.

Theorem 3.2. The function f(t) satisfy assumptions A1–A3 with ‘¿ 2. Suppose N¿ 1=�, there
exist the bounds,

|u− uN |6 C
�2‘N 2‘ exp

(
	(x − 2�) + �(y − 2�)

2�

)
exp

(	�
�

− tN (2�− y)
)
; (56)

|ux − (uN )x|6 C
�2‘N 2‘−1 exp

(
	(x − 2�) + �(y − 2�)

2�

)
exp

(	�
�

− tN (2�− y)
)
; (57)

|uy − (uN )y|6 C
�2‘ N 2‘−1 exp

(
	(x − 2�) + �(y − 2�)

2�

)
exp

(	�
�

− tN (2�− y)
)
; (58)

where C is a generic positive constant, independent of � and N .

Proof. We only show ‘ = 2. Since the proof for ‘¿ 2 is similar. From A3 and (44), we have

Ak =
1
k3

[f′′(2�)− f′′(0)]− 1
k3

∫ 2�

0
f′′′(t) cos kt dt

=− 1
k4

∫ 2�

0
f′′′(t) d sin kt

=− 1
k4

[f′′′(t) sin kt]2�0 +
1
k4

∫ 2�

0
f′′′′(t) sin kt dt

=− 1
k5

∫ 2�

0
f′′′′(t) d cos kt

=− 1
k5

[f′′′′(t) cos kt]2�0 +
1
k5

∫ 2�

0
sin kt df′′′′(t): (59)

Hence, we obtain from (45) and A2

|Ak |6 C
k5�4

exp
(
	(x − 2�) + �(y − 2�)

2�

)
exp

(	�
�

)
: (60)

Following the arguments in (47) we have

|u(x; y)− uN (x; y)|6 exp(−tN (2�− y))
∞∑

k=N+1

|Ak |

6
C

N 4�4
exp

(
	(x − 2�) + �(y − 2�)

2�

)
exp

(	�
�

− tN (2�− y)
)
: (61)

This is the result (56) for ‘ = 2, the proofs for (57) and (58) are similar to the above.
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Suppose that the maximal errors of solutions and derivatives are less than %, then for ‘¿ 1, we
may require respectively,

N¿
1
�

(
C
%

)1=2‘

exp
(
	�=�− tN (2�− y)

2‘

)
;

N¿
(

C
�2‘%

)1=(2‘−1)

exp
(
	�=�− tN (2�− y)

2‘ − 1

)
: (62)

From (62), we see that the worst convergence rates happen at x = y = 2�,

N¿C
1
�

(
C
%

)1=2‘

exp
( 	�
2‘�

)
; N¿

(
C

�2‘%

)1=(2‘−1)

exp
(

	�
(2‘ − 1)�

)
: (63)

Although the lower bound of N in (63) is smaller than that in (55), � is still limited to being not
small over the entire S in practice.

For numerical computation, let us consider a subdomain S∗ ⊂ S, where

S∗ = {(x; y); 06 x6 2�− ��1+q; 06y6 2�− ��1+q}: (64)

Here q and � are positive integers. We have the following corollary of Theorem 3.1.

Corollary 3.1. Let all the conditions in Theorem 3.1 hold. If it is required that the errors in the
approximate derivatives are less than %=exp(−M) over the subdomain S∗, then N (¿ 1=�2) should
be chosen, to satisfy the following inequality,

N¿
	�=�+ lnC +M

��1+q ; (65)

where C is the constant in Theorem 3.1.

Proof. From Theorem 3.1 we have

|ux − (uN )x|6 C
�2N

exp
(
	(x − 2�) + �(y − 2�)

2�

)
exp

(	�
�

− tN (2�− y)
)

6 %= exp(−M): (66)

The worst convergence happens at ( Ox; Oy), where Ox= Oy=2�−��1+q. Then from �2N¿ 1 and tN ¿N ,
we may require

C exp
(	�

�
− N��1+q

)
6 exp(−M): (67)

This leads to

lnC +
	�
�

− N��1+q +M6 0; (68)

and the desired bound (65) is obtained.

We comment that the above corollary gives speci=c lower bounds for N which guarantees that
the absolute errors in the approximate derivatives are bounded above by %. This result is of practical
importance as it speci=es the minimum number of terms in the series solution so that the errors in
the approximate derivatives are less than a given (small) positive constant.
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In the next two sections, we will design two di&erent models by judicious choices of the boundary
conditions. Numerical results on the two models will be presented.

4. Model I

Let us consider the numerical computation of the above series solutions. To do so, we design a
model, called Model I, with a waterfalls pro=le of solutions on S = [0; �]2. This model is chosen as
follows.

We =rst require that the solution to this model satis=es the corner conditions u(0; 0) = 0 and
u(�; 0) = u(0; �) = u(�; �) = 1. The boundary layers of this model occur at x = � and y = �. The
particular solution to Lu= 0 is of the form

u(x; y) = exp
(
	x + �y

2�

)

×{a0 sinh(t0y) + b0 sinh(t0x) + c0(x sinh(t0y) + y sinh(t0x))} in [0; �]2; (69)

where t0=(1=2�)(	2+�2+4�c)1=2. Clearly, u in (69) already satis=es u(0; 0)=0. Thus, the coe(cients
a0; b0 and c0 can be determined by the other three conditions, yielding

a0 =
1

sinh(t0�)
exp

(
−��
2�

)
; b0 =

1
sinh(t0�)

exp
(
−	�
2�

)
;

c0 =
1

2� sinh(t0�)

{
exp

(
− (	+ �)�

2�

)
− exp

(−��
2�

)
− exp

(−	�
2�

)}
: (70)

The particular solution satisfying the corner conditions, denoted as Ou, then becomes

Ou(x; y) =
(
sinh(t0y)
sinh(t0�)

− x sinh(t0y) + y sinh(t0x)
2� sinh(t0�)

)
exp

(
	x − �(�− y)

2�

)

+
(
sinh(t0x)
sinh(t0�)

− x sinh(t0y) + y sinh(t0x)
2� sinh(t0�)

)
exp

(−	(�− x) + �y
2�

)

+
x sinh(t0y) + y sinh(t0x)

2� sinh(t0�)
exp

(
−	(�− x) + �(�− y)

2�

)
: (71)

Clearly, this particular solution is symmetric in x and y.
Now, we pose the following boundary conditions on [0; �]2 for the model

u(x; �) = u(�; y) = 1;

u(x; 0) =
sinh(t0x)
sinh(t0�)

exp
(
−	(�− x)

2�

)
= Ou(x; 0) = g1(x);

u(0; y) =
sinh(t0y)
sinh(t0�)

exp
(
−�(�− y)

2�

)
= Ou(0; y) = g3(y): (72)
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u=g
1
(x)

u=1

X

Y

u=1

0

Fig. 3. The solution domain for Model I.

These conditions are illustrated in Fig. 3. Using the results in the previous sections, it is easy to see
that the particular solution to Lu= 0 satisfying the above boundary conditions is given by

u(x; y) = Ou(x; y) + exp
(−	(�− x) + �y

2�

) ∞∑
k=1

ak
sinh(tky)
sinh(tk�)

sin kx

+exp
(
	x − �(�− y)

2�

) ∞∑
k=1

ck
sinh(tkx)
sinh(tk�)

sin ky; (73)

where Ou(x; y) is given in (71) and

ak =
2
�

∫ �

0
(1− Ou(x; �)) exp

(
	(�− x)− ��

2�

)
sin kx dx; (74)

ck =
2
�

∫ �

0
(1− Ou(�; y)) exp

(−	�+ �(�− y)
2�

)
sin ky dy: (75)

The integrals on the right sides of (74) and (75) can be evaluated exactly using the results in [5],
leading to

ak =
2
�

{[
exp

(
(	− �)�

2�

)
− 1

] [
(−1)k

2k
− k(−1)k

2t2k

]

+exp
(
(	− �)�

2�

)[
k

p2
x + k2

− 1
k

]
+ exp(py�)

[
(−1)k

2k
+

k(−1)k

2t2k
− k(−1)k

p2
x + k2

]}
; (76)
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ck =
2
�

{[
exp

(
(� − 	)�

2�

)
− 1

] [
(−1)k

2k
− k(−1)k

2t2k

]

+exp
(
(� − 	)�

2�

)[
k

p2
y + k2

− 1
k

]
+ exp(px�)

[
(−1)k

2k
+

k(−1)k

2t2k
− k(−1)k

p2
y + k2

]}
; (77)

where px =−	=2� and py =−�=2�. Truncating the series (73), we have

u(x; y) ≈ Ou(x; y) + exp
(−	(�− x) + �y

2�

) N∑
k=1

ak
sinh(tky)
sinh(tk�)

sin kx

+exp
(
	x − �(�− y)

2�

) N∑
k=1

ck
sinh(tkx)
sinh(tk�)

sin ky:

=: Ou(x; y) + u(1)N (x; y) + u(2)N (x; y): (78)

Note that since, in this case, S = [0; �]2 rather than [0; 2�]2, the assumption A1 should be modi=ed
as f(0) = f(�) = 0. Application of Theorem 3.1 to the second term, u(1)N , on the right-hand side in
(78) with �6 	 gives

|u− u(1)N |6 C
�2N 2 exp

(
	(x − �) + �(y − �)

2�

)
exp

(	�
2�

− tN (�− y)
)
; (79)

|ux − (u(1)N )x|6 C
�2N

exp
(
	(x − �) + �(y − �)

2�

)
exp

(	�
2�

− tN (�− y)
)
; (80)

|uy − (u(1)N )y|6 C
�2N

exp
(
	(x − �) + �(y − �)

2�

)
exp

(	�
2�

− tN (�− y)
)
; (81)

where C is a generic positive constant independent of � and N . When 	=� and x+y6 �, (79)–(81)
become

|u− u(1)N |6 C
�2N 2 exp(−tN (�− y));

|ux − (u(1)N )x|6 C
�2N

exp(−tN (�− y));

|uy − (u(1)N )y|6 C
�2N

exp(−tN (�− y)):

Similarly, we have the following bounds for the third term on the right-hand side in (78)

|u− u(2)N |6 C
�2N 2 exp(−tN (�− x));
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Fig. 4. Regions of di&erent convergences for Model I.

|ux − (u(2)N )x|6 C
�2N

exp(−tN (�− x));

|uy − (u(2)N )y|6 C
�2N

exp(−tN (�− x)):

From the above estimates on the errors in u(1)N ; u(2)N and their derivatives we see that the convergence
of (78) on the region S ∩ (x + y6 �) is fast. Moreover, (65) for the derivatives at ux(� − ��1+q;
�− ��1+q) should be modi=ed as

N¿
	�=2�+ lnC +M

��1+q =O(�−(2+q)): (82)

The convergence of the solutions and derivatives is still slow at points near the layer. In particular, the
slowest convergence occurs in the approximation of the normal derivative un at the corner (�; �). The
convergence rates of solutions and derivatives in Model I vary signi=cantly at di&erent locations of
S. Fig. 4 illustrates di&erent convergence rates in di&erent sub-regions of S for 	=�(¿ 0). However,
from our extensive computational experience we notice that only the computation of the derivatives
near the corner (�; �) su&ers from poor convergence.

We now perform some numerical experiments for Model I using the expression in (78). To do
so, we choose 	 = � = c = 1, % = 10−3, and � = 0:1–0:002. The implementation details and results
will be reported in a future paper, and here we only present some of the numerical results, as given
in Table 1 and Fig. 5, to illustrate the solutions for � = 0:1. Let us consider the solution behavior
using the results. First, we examine the solutions along the horizontal line of y=�=2. The solutions
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Table 1
The solution values near boundary along y = �=2 for Model I with � = 0:1

x 1/2 �=2 � − 5� � − 4� � − 3�

u 8:1903(−9) 5:6825(−8) 4:2388(−3) 1:2660(−2) 3:7771(−2)
ux 1:7785(−8) 3:3622(−7) 4:6407(−2) 1:3844(−1) 4:1273(−1)
uy 1:1053(−7) 3:3622(−7) 7:4644(−5) 1:2158(−4) 1:7770(−4)

x � − 2� � − � � − �2 � − �3 �

u 1:1261(−1) 3:3562(−1) 8:9657(−1) 9:8914(−1) 1:0000
ux 1.2299 3.6645 9.7880 10.798 10.917
uy 2:2044(−4) 1:9552(−4) 3:1418(−5) 3:2872(−6) 0.0000
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Fig. 5. The computed solution u and derivatives ux and uy to Model I with � = 0:1.

and the derivatives along this segment are computed and listed in Table 1. The value uy(�; �=2)=0
is obtained directly from the boundary condition u = 0 at x = �, and ux(�; �=2) is computed from
(78). From the discrete values listed in Table 1 we see that the width of boundary layer at x= � is
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about 2�. 1 More observations can be seen from Table 1 as follows. The values of the derivative uy

parallel to the line x = � are very small, due to facts that max|uy|6 2:2 × 10−4, while the normal
derivatives within the 2� neighborhood of the boundary layer are large, due to |un| = |ux|¿ 1:23
when x¿ �−2�. Moreover, the normal derivatives ux increase monotonically when x increases, and
the maximal normal derivative occurs at the boundary: un(�; �=2) = ux(�; �=2) = 10:917 ≈ 1=�. This
also illustrates that the normal derivatives are of order O(1=�) near the boundary layer. All the above
observations agree with the results in [11,14].

5. Model II

While the convergence of the series solution to Model I is slow, we consider another special case
to which the series solution converges fast. This is our second computational model, called Model
II, to be de=ned below, in which only a few expansion terms of particular functions are needed.
This is important to the combined methods explored in [10]. Let us consider the problem Lu = 0
on [0; �]2 with the following Dirichlet conditions,

u(x; �) = u(�; y) = 0; (83)

u(x; 0) = ) exp(p cos x) sin(p sin x) exp
(
−	(�− x)

2�

)
= g1(x); (84)

u(0; y) = ) exp(p cosy)sin(p sin y) exp
(
−�(�− y)

2�

)
= g3(y); (85)

where p26 1, and ) is a parameter used to adjust the solutions to be O(1). The solution is given
by

u(x; y) =
∞∑
n=1

(an*n(x; y) + bn n(x; y)); (86)

where

*n(x; y) = exp
(−	(�− x) + �y

2�

)
sinh(tn(�− y))

sinh(tn�)
sin nx;

 n(x; y) = exp
(
	x − �(�− y)

2�

)
sinh(tn(�− x))

sinh(tn�)
sin ny; (87)

1 Strictly speaking, the width of the boundary layer is a little larger than 2� by noting u(� − 2�; �=2) = 0:11261 and
u(� − 3�; �=2) = 0:037771 given in Table 1. Such a numerical observation coincides perfectly with the theoretical width
of one dimensional problems in Miller et al. [11, p. 7],

� ln
1
�
= � ln 10 = 2:3�:

The reason for this remarkable coincidence is that the solution along the horizontal segment from (�− 5�; �=2) to (�; �=2)
can be regarded approximately as that of a one dimensional problem, due to the fact that it is far from the boundary
segments y = 0 and y = �.
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and

tn =
(
n2 +

	2 + �2 + 4�c
4�2

)1=2

:

Based on the formula in [5], i.e.,
∞∑
n=1

pn sin nx
n!

= exp(p cos x) sin(p sin x); p26 1;

we derive from the orthogonality of trigonometric functions that

an = bn = )
pn

n!
: (88)

Let us =nd the value of ) in (88). First we conclude that the maximal solutions in (86) occurs on
the boundary �. This can be justi=ed by contradiction. Suppose that a maximal value of u(x; y)
occurs at an interior point P ∈ S. Then ux(P) = uy(P) = 0 and Qu(P)¡ 0. Since u¿ 0 and c¿ 0
we obtain from (1)

Lu=
9
9x

(
−�

9
9x u+ 	u

)
+
9
9y

(
−�

9
9y u+ �u

)
+ cu

=−�Qu+ cu¿ 0

at P. This contradicts the fact Lu= 0 in S.
Next, we seek the maximal value on the x axis. Consider the function g1(x) in (84). The maximal

value occurs when 9g1( Ox)=9x = 0, where
9g1(x)
9x = ) exp(p cos x) exp

(
−	(�− x)

2�

)

×
{(

−p sin x +
	
2�

)
sin(p sin x) + cos(p sin x)p cos x

}
= 0: (89)

Let Ox = �− -� with a positive constant -. Since -��1, we have

sin(�− -�) ≈ -� and cos(�− -�) ≈ −
(
1− (-�)2

2

)
;

and so from (89) we have(
−p-�+

	
2�

)
(p-�)− p ≈ 0:

This gives an approximation -= 2=	, and then Ox = �− (2=	)�. We choose g1( Ox) ≈ 1, so that

g1( Ox) ≈ 2)p
�
	
exp(−(	+ p)) = 1;

and then let

)=
	

2p�
exp(p+ 	):

Similarly, for (85), we have ) = exp(p + �)�=2p�. Suppose that �6 	, without loss of generality.
Then we may choose

)=
	
2p�

exp(p+ 	):
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Truncating (86), we have

uN (x; y) =
N∑

n=1

(an*n(x; y) + bn n(x; y)); (90)

where *n(x; y) and  n(x; y) are given in (87), and an and bn in (88). The upper bound for the error
in uN is given in the following theorem.

Theorem 5.1. For the solutions of Model II with p26 1, there exists the error bound,

|u− uN |6 2)
pN+1

N !N
: (91)

Moreover, if �6 	, and N6 1=� for ��1, then there exist the bounds,

|ux − (uN )x|6C1

()
�

) pN+1

N !N
; |uy − (uN )y|6C1

()
�

) pN+1

N !N
; (92)

where C1 = 4(2 + 	).

Proof. Taking absolute value, we have

|*k(x; y)|= exp
(−	(�− x) + �y

2�

) ∣∣∣∣sinh(tk(�− y))
sinh(tk�)

∣∣∣∣ |sin kx|: (93)

For 06y6 �,∣∣∣∣sinh(tk(�− y))
sinh(tk�)

∣∣∣∣= exp(tk(�− y))
exp(tk�)

× 1− exp(−2tk(�− y))
1− exp(−2tk�)

6 exp(−tky):

Using this, we obtain from (93)

|*k(x; y)|6 exp
(−	(�− x) + �y

2�

)
exp(−tky)

6 exp
(−	(�− x)

2�

)
exp

(
−
(
tk − �

2�

)
y
)
6 1; (94)

by noting tk ¿�=2� in (19). Similarly,

| k(x; y)|6 1: (95)

Using (86), (90), (94), (95) and (88), we obtain

|u− uN |6
∞∑

k=N+1

{ak |*k(x; y)|+ bk | k(x; y)|}

6 2
∞∑

k=N+1

ak = 2)
∞∑

k=N+1

pk

k!
: (96)
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Moreover, we have from p26 1

∞∑
k=N+1

pk

k!
=

pN

N !

{
p

N + 1
+

p2

(N + 1)(N + 2)
+ · · ·

}

6
pN

N !

∞∑
n=1

{
p

N + 1

}n

=
pN

(N !)
p=(N + 1)

1− p=(N + 1)

=
pN

(N !)
p

N + (1− p)
6

pN+1

N !N
: (97)

Eqs. (96) and (97) lead to the =rst desired result in (91).
Next, we have from (86) and (90),

ux − (uN )x =
∞∑

k=N+1

{( 	
2�

)
ak*k(x; y) +

( 	
2�

)
bk k(x; y)

}

+
∞∑

k=N+1

{
akk exp

(−	(�− x) + �y
2�

)
sinh(tk(�− y))

sinh(tk�)
cos kx

−tkbk exp
(
	x − �(�− y)

2�

)
cos(tk(�− x))

sinh(tk�)
sin ky

}
: (98)

Moreover, for k¿N ,
∣∣∣∣cosh(tk(�− y))

sinh(tk�)

∣∣∣∣ = exp(tk(�− y))
exp(tk�)

× 1 + exp(−2tk(�− y))
1− exp(−2tk�)

6 3 exp(−tky): (99)

We obtain from tk ¿ 	=2� and tk ¿ �=2�,

|ux − (uN )x|6
∞∑

k=N+1

( 	
2�

)
{ak |*k(x; y)|+ bk | k(x; y)|}

+
∞∑

k=N+1

{
akk exp

(−	(�− x)
2�

)
exp

(
−
(
tk − �

2�

)
y
)
| cos kx|

+3tkbk exp
(−�(�− y)

2�

)
exp

(
−
(
tk − 	

2�

)
x
)
| sin kx|

}

6
∞∑

k=N+1

{( 	
2�

)
(ak + bk) + kak + 3tkbk

}
: (100)
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From �6 	 and
√

x2 + y26 |x|+ |y|, we obtain

tk =

√
k2 +

	2 + �2 + 4�c
4�2

=

√
k2 +

2	2 + 4�c
4�2

6 k +

√
2	+ 2

√
�c

2�
6 k +

	
�
: (101)

Hence we obtain from (100), (101) and (88)

|ux − (uN )x|6
∞∑

k=N+1

{( 	
2�

)
(ak + bk) + kak + 3

(
k +

	
�

)
bk

}

= 4
	
�

∞∑
k=N+1

ak + 4
∞∑

k=N+1

kak

= 4)
	
�

∞∑
k=N+1

pk

k!
+ 4)

∞∑
k=N+1

pk

(k − 1)!
: (102)

Now, using p26 1 and N¿ 1, we have
∞∑

k=N+1

pk

(k − 1)!
=

pN+1

N !

{
1 +

p
N + 1

+
p2

(N + 1)(N + 2)
+ · · ·

}

6
pN+1

N !

∞∑
n=0

{
p

N + 1

}n

=
pN+1

(N !)
1

1− p=N + 1

=
pN+1

(N !)
N + 1

N + (1− p)
6

pN+1

(N !)
N + 1
N

6 2
pN+1

N !
: (103)

Noting that N�6 1 for ��1, we obtain from (102), (103) and (97)

|ux − (uN )x|6 4)
(
2 +

	
N�

) pN+1

N !

6 4(2 + 	)
)
�
pN+1

N !N
= C1

)
�
pN+1

N !N
: (104)

This is the left-hand result in (92), and the proof for the result on the right-hand side in (92) is
similar.

Let us consider the minimum number of terms, N , which guarantees that the error in the approx-
imation (uN )x6 % for a given (small) positive number %. Clearly, it is required that

|ux − (uN )x|6C1

()
�

) pN+1

N !N
6 %:
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Fig. 6. The computed solutions to Model II with di&erent values of �.

From the Stirling formula in [1, p. 257], we have

N ! =
(
N
e

)N √
2�N

(
1 +

1
12N

+O
(

1
N 2

))
: (105)

Using this, the above inequality becomes
C1√
2�N

()
e

)(ep
N

)N+1
6 �%:

From this we see that we may choose N�1=�. When %= 10−3 and ��1, N needed is very small.
In fact, N = 15 is good enough for �= 10−7.

Let us now consider the computation of the series solution (90). We choose p=1 and 	=�=c=1.
We also choose % = 10−3, and N is chosen to be in the range (10; 15) for � = 0:1; 0:01; 10−4 and
10−7. The pro=les of the numerical solutions are plotted in Fig. 6. From the =gure it is seen that the
solutions contain two towers at (� − 2�; 0) and (0; � − 2�) with the height close to one. The areas
of the cross-sections of two towers are O(�2). Hence, when � is very small, the towers become two
spikes. From Fig. 6 it is also seen that the solution pro=les are like wedding gauze on a bride.

6. Concluding remarks

To conclude this paper, let us give a few remarks.

(1) The motivation of this paper is to discover particular solutions of singularly perturbed di&erential
equations in simple cases, i.e., those with constant coe(cients in rectangular domains. These
explicit particular solutions are important for exploring the solution behavior, see Babuska and
Zhang [2]. In Section 2, a number of particular solutions of (1) have been derived. From the
given particular solutions, one may design deliberately some useful models which may be used
to test other numerical methods.

(2) A Convergence analysis is given in Sections 3 and 5 for Model II. Considering rather arbitrary
values given in the Dirichlet condition on �, when choose the solutions with the =rst leading
N terms of particular solutions, Theorems 3.1 and 3.2 con=rm the convergence of the =rst N
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leading terms of particular solutions as N → ∞. However, in real numerical simulations, only a
moderately small � can be used due to slow convergence. In our numerical experiments, if we
require that the absolute errors of solutions and derivatives are less than %=10−3, we may choose
N =O(104) for �= 0:01, to obtain the solutions over the sub-region S∗ = {(x; y); 06 x6 �−
�; 06y6 �− �}. Of course, it is possible to increase N up to, say, N =O(108), so that � may
be chosen as small as �= 10−4. We will report these results in detail in a future paper.

(3) We have designed two models: Model I with waterfalls pro=les of the solutions, and Model II
with wedding-gauze pro=les of the solutions. The convergence of the series solutions to Model
I is slow and valid for � = 0:1–10−4, but the convergence for Model II is fast and valid for
� = 0:1–10−7. In practice, the study of problems with � = 0:1–0:01 is often useful, and easy
to illustrate the changes of solutions with respect to those of the parameters 	; �, and c. Some
numerical simulations of solutions in Models I and II have been given in this paper, which
provide intrinsic characteristics of solutions to the test problems.

(4) Since the numerical values of exp((	x + �y)=2�) change in a huge range when �6 0:1, Math-
ematica with unlimited working digits needs to be used for Model I. In this case, the rounding
errors may be ignored. More detailed numerical techniques and computational results will be
reported in a forthcoming paper. Nevertheless, the computation of Model I with �¿ 0:1 and
Model II with �¿ 10−7 may be carried out in double precision.
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