2,224 research outputs found

    Effect of Danshen for improving clinical outcomes in patients with bladder cancer: a retrospective, population-based study

    Get PDF
    Introduction: Traditional Chinese Medicine (TCM) has a broad application in healthcare, with Danshen being a notable herb used in Eastern medicine for cancer treatment. This study aims to explore the relationship between Danshen use and cardiovascular risks among bladder cancer patients.Methods: Patients were selected based on a confirmed diagnosis of bladder cancer with specific inclusion and exclusion criteria to control for certain comorbidities and treatments. Utilizing Taiwan’s National Health Insurance data from 2003 to 2013, this retrospective, population-based study identified three groups: 525 patients treated with Danshen, 6,419 patients not treated with TCM, and 4,356 patients treated with TCM but not with Danshen. The Cox proportional hazard model was employed to estimate the risks of Major Adverse Cardiovascular Events (MACE) and mortality while accounting for various confounders.Results: The overall incidence of MACEs was significantly lower in the Danshen group (5%) compared to the TCM (8.1%) and non-TCM (9.9%) groups (p < 0.001). The Cox model revealed that bladder cancer patients treated with Danshen had the lowest risk of MACE (adjusted hazard ratio, 0.56; 95% confidence interval, 0.38–0.84) and all-cause mortality (adjusted hazard ratio, 0.60; 95% confidence interval, 0.44–0.82).Discussion: The findings suggest that Danshen reduces the risk of MACE and all-cause mortality in bladder cancer patients, highlighting its potential benefits. This underpins the necessity for further research to substantiate the cardiovascular benefits of Danshen in bladder cancer patients and potentially broaden its application in oncology healthcare

    Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid

    Get PDF
    The present study aims to investigate the effect of suspended nanoparticles in base fluids, namely nanofluids, on the thermal resistance of a disk-shaped miniature heat pipe [DMHP]. In this study, two types of nanoparticles, gold and carbon, in aqueous solution are used respectively. An experimental system was set up to measure the thermal resistance of the DMHP with both nanofluids and deionized [DI] water as the working medium. The measured results show that the thermal resistance of DMHP varies with the charge volume and the type of working medium. At the same charge volume, a significant reduction in thermal resistance of DMHP can be found if nanofluid is used instead of DI water

    Regulation of CLC-1 chloride channel biosynthesis by FKBP8 and Hsp90β.

    Get PDF
    Mutations in human CLC-1 chloride channel are associated with the skeletal muscle disorder myotonia congenita. The disease-causing mutant A531V manifests enhanced proteasomal degradation of CLC-1. We recently found that CLC-1 degradation is mediated by cullin 4 ubiquitin ligase complex. It is currently unclear how quality control and protein degradation systems coordinate with each other to process the biosynthesis of CLC-1. Herein we aim to ascertain the molecular nature of the protein quality control system for CLC-1. We identified three CLC-1-interacting proteins that are well-known heat shock protein 90 (Hsp90)-associated co-chaperones: FK506-binding protein 8 (FKBP8), activator of Hsp90 ATPase homolog 1 (Aha1), and Hsp70/Hsp90 organizing protein (HOP). These co-chaperones promote both the protein level and the functional expression of CLC-1 wild-type and A531V mutant. CLC-1 biosynthesis is also facilitated by the molecular chaperones Hsc70 and Hsp90β. The protein stability of CLC-1 is notably increased by FKBP8 and the Hsp90β inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) that substantially suppresses cullin 4 expression. We further confirmed that cullin 4 may interact with Hsp90β and FKBP8. Our data are consistent with the idea that FKBP8 and Hsp90β play an essential role in the late phase of CLC-1 quality control by dynamically coordinating protein folding and degradation

    THE INFLUENCE OF THE HAMSTRING MYOFASCIAL RELEASE ON GROUND REACTION FORCE DURING GAIT

    Get PDF
    The purpose of this study was to investigate the influence of the myofascial release on hamstring during gait in order to inform the clinical management of patients with muscular tightness of hamstring. Sixteen adult subjects with the muscle tightness of hamstring participated in this study. The peak of the vertical ground reaction force before treatment (1.114 body weight) in the stance phase is significantly higher than that (1.065 body weight) after treatment (P=0.007). The peak knee extension moment was significantly decreased across the intervention (0.48 vs. 0.33 Nm/kg, P = 0.019). The understanding of the efficacy of myofascial release on hamstring muscles is helpful to inform the clinical management of patients with muscular tightness of hamstring
    corecore