1,091 research outputs found
Detecting Weakly Simple Polygons
A closed curve in the plane is weakly simple if it is the limit (in the
Fr\'echet metric) of a sequence of simple closed curves. We describe an
algorithm to determine whether a closed walk of length n in a simple plane
graph is weakly simple in O(n log n) time, improving an earlier O(n^3)-time
algorithm of Cortese et al. [Discrete Math. 2009]. As an immediate corollary,
we obtain the first efficient algorithm to determine whether an arbitrary
n-vertex polygon is weakly simple; our algorithm runs in O(n^2 log n) time. We
also describe algorithms that detect weak simplicity in O(n log n) time for two
interesting classes of polygons. Finally, we discuss subtle errors in several
previously published definitions of weak simplicity.Comment: 25 pages and 13 figures, submitted to SODA 201
From Proximity to Utility: A Voronoi Partition of Pareto Optima
We present an extension of Voronoi diagrams where when considering which site
a client is going to use, in addition to the site distances, other site
attributes are also considered (for example, prices or weights). A cell in this
diagram is then the locus of all clients that consider the same set of sites to
be relevant. In particular, the precise site a client might use from this
candidate set depends on parameters that might change between usages, and the
candidate set lists all of the relevant sites. The resulting diagram is
significantly more expressive than Voronoi diagrams, but naturally has the
drawback that its complexity, even in the plane, might be quite high.
Nevertheless, we show that if the attributes of the sites are drawn from the
same distribution (note that the locations are fixed), then the expected
complexity of the candidate diagram is near linear.
To this end, we derive several new technical results, which are of
independent interest. In particular, we provide a high-probability,
asymptotically optimal bound on the number of Pareto optima points in a point
set uniformly sampled from the -dimensional hypercube. To do so we revisit
the classical backward analysis technique, both simplifying and improving
relevant results in order to achieve the high-probability bounds
Untangling Planar Curves
Any generic closed curve in the plane can be transformed into a simple closed curve by a finite sequence of local transformations called homotopy moves. We prove that simplifying a planar closed curve with n self-crossings requires Theta(n^{3/2}) homotopy moves in the worst case. Our algorithm improves the best previous upper bound O(n^2), which is already implicit in the classical work of Steinitz; the matching lower bound follows from the construction of closed curves with large defect, a topological invariant of generic closed curves introduced by Aicardi and Arnold. This lower bound also implies that Omega(n^{3/2}) degree-1 reductions, series-parallel reductions, and Delta-Y transformations are required to reduce any planar graph with treewidth Omega(sqrt{n}) to a single edge, matching known upper bounds for rectangular and cylindrical grid graphs. Finally, we prove that Omega(n^2) homotopy moves are required in the worst case to transform one non-contractible closed curve on the torus to another; this lower bound is tight if the curve is homotopic to a simple closed curve
Tightening curves and graphs on surfaces
Any continuous deformation of closed curves on a surface can be decomposed into a finite sequence of local changes on the structure of the curves; we refer to such local operations as homotopy moves. Tightening is the process of deforming given curves into their minimum position; that is, those with minimum number of self-intersections. While such operations and the tightening process has been studied extensively, surprisingly little is known about the quantitative bounds on the number of homotopy moves required to tighten an arbitrary curve.
An unexpected connection exists between homotopy moves and a set of local operations on graphs called electrical transformations. Electrical transformations have been used to simplify electrical networks since the 19th century; later they have been used for solving various combinatorial problems on graphs, as well as applications in statistical mechanics, robotics, and quantum mechanics. Steinitz, in his study of 3-dimensional polytopes, looked at the electrical transformations through the lens of medial construction, and implicitly established the connection to homotopy moves; later the same observation has been discovered independently in the context of knots.
In this thesis, we study the process of tightening curves on surfaces using homotopy moves and their consequences on electrical transformations from a quantitative perspective. To derive upper and lower bounds we utilize tools like curve invariants, surface theory, combinatorial topology, and hyperbolic geometry. We develop several new tools to construct efficient algorithms on tightening curves and graphs, as well as to present examples where no efficient algorithm exists. We then argue that in order to study electrical transformations, intuitively it is most beneficial to work with monotonic homotopy moves instead, where no new crossings are created throughout the process; ideas and proof techniques that work for monotonic homotopy moves should transfer to those for electrical transformations. We present conjectures and partial evidence supporting the argument
Computing the Girth of a Planar Graph in Linear Time
The girth of a graph is the minimum weight of all simple cycles of the graph.
We study the problem of determining the girth of an n-node unweighted
undirected planar graph. The first non-trivial algorithm for the problem, given
by Djidjev, runs in O(n^{5/4} log n) time. Chalermsook, Fakcharoenphol, and
Nanongkai reduced the running time to O(n log^2 n). Weimann and Yuster further
reduced the running time to O(n log n). In this paper, we solve the problem in
O(n) time.Comment: 20 pages, 7 figures, accepted to SIAM Journal on Computin
Lower Bounds for Electrical Reduction on Surfaces
We strengthen the connections between electrical transformations and homotopy from the planar setting - observed and studied since Steinitz - to arbitrary surfaces with punctures. As a result, we improve our earlier lower bound on the number of electrical transformations required to reduce an n-vertex graph on surface in the worst case [SOCG 2016] in two different directions. Our previous Omega(n^{3/2}) lower bound applies only to facial electrical transformations on plane graphs with no terminals. First we provide a stronger Omega(n^2) lower bound when the planar graph has two or more terminals, which follows from a quadratic lower bound on the number of homotopy moves in the annulus. Our second result extends our earlier Omega(n^{3/2}) lower bound to the wider class of planar electrical transformations, which preserve the planarity of the graph but may delete cycles that are not faces of the given embedding. This new lower bound follow from the observation that the defect of the medial graph of a planar graph is the same for all its planar embeddings
Computing Diameter+2 in Truly Subquadratic Time for Unit-Disk Graphs
Finding the diameter of a graph in general cannot be done in truly
subquadratic assuming the Strong Exponential Time Hypothesis (SETH), even when
the underlying graph is unweighted and sparse. When restricting to concrete
classes of graphs and assuming SETH, planar graphs and minor-free graphs admit
truly subquadratic algorithms, while geometric intersection graphs of unit
balls, congruent equilateral triangles, and unit segments do not. Unit-disk
graphs are one of the major open cases where the complexity of diameter
computation remains unknown. More generally, it is conjectured that a truly
subquadratic time algorithm exists for pseudo-disk graphs.
In this paper, we show a truly subquadratic algorithm of running time
, for finding the diameter in a unit-disk graph, whose
output differs from the optimal solution by at most 2. This is the first
algorithm that provides an additive guarantee in distortion, independent of the
size or the diameter of the graph. Our algorithm requires two important
technical elements. First, we show that for the intersection graph of
pseudo-disks, the graph VC-dimension, either of -hop balls or the distance
encoding vectors, is 4. This contracts to the VC dimension of the pseudo-disks
themselves as geometric ranges (which is known to be 3). Second, we introduce a
clique-based -clustering for geometric intersection graphs, which is an
analog of the -division construction for planar graphs. We also showcase the
new techniques by establishing new results for distance oracles for unit-disk
graphs with subquadratic storage and query time. The results naturally
extend to unit or -disks and fat pseudo-disks of similar size.
Last, if the pseudo-disks additionally have bounded ply, we have a truly
subquadratic algorithm to find the exact diameter.Comment: 28 pages, 7 figure
- …